Matches in SemOpenAlex for { <https://semopenalex.org/work/W1840508780> ?p ?o ?g. }
- W1840508780 abstract "Abstract Background Recent advances in sequencing technologies have greatly increased the identification of mutations in cancer genomes. However, it remains a significant challenge to identify cancer-driving mutations, since most observed missense changes are neutral passenger mutations. Various computational methods have been developed to predict the effects of amino acid substitutions on protein function and classify mutations as deleterious or benign. These include approaches that rely on evolutionary conservation, structural constraints, or physicochemical attributes of amino acid substitutions. Here we review existing methods and further examine eight tools: SIFT, PolyPhen2, Condel, CHASM, mCluster, logRE, SNAP, and MutationAssessor, with respect to their coverage, accuracy, availability and dependence on other tools. Results Single nucleotide polymorphisms with high minor allele frequencies were used as a negative (neutral) set for testing, and recurrent mutations from the COSMIC database as well as novel recurrent somatic mutations identified in very recent cancer studies were used as positive (non-neutral) sets. Conservation-based methods generally had moderately high accuracy in distinguishing neutral from deleterious mutations, whereas the performance of machine learning based predictors with comprehensive feature spaces varied between assessments using different positive sets. MutationAssessor consistently provided the highest accuracies. For certain combinations metapredictors slightly improved the performance of included individual methods, but did not outperform MutationAssessor as stand-alone tool. Conclusions Our independent assessment of existing tools reveals various performance disparities. Cancer-trained methods did not improve upon more general predictors. No method or combination of methods exceeds 81% accuracy, indicating there is still significant room for improvement for driver mutation prediction, and perhaps more sophisticated feature integration is needed to develop a more robust tool." @default.
- W1840508780 created "2016-06-24" @default.
- W1840508780 creator A5006341480 @default.
- W1840508780 creator A5014672294 @default.
- W1840508780 creator A5059407081 @default.
- W1840508780 creator A5060146570 @default.
- W1840508780 creator A5073342778 @default.
- W1840508780 date "2013-05-01" @default.
- W1840508780 modified "2023-10-06" @default.
- W1840508780 title "Assessment of computational methods for predicting the effects of missense mutations in human cancers" @default.
- W1840508780 cites W1969735624 @default.
- W1840508780 cites W1979946545 @default.
- W1840508780 cites W1980740976 @default.
- W1840508780 cites W1983728054 @default.
- W1840508780 cites W1987507232 @default.
- W1840508780 cites W1989773675 @default.
- W1840508780 cites W2025183726 @default.
- W1840508780 cites W2059145105 @default.
- W1840508780 cites W2072572998 @default.
- W1840508780 cites W2077971859 @default.
- W1840508780 cites W2082887122 @default.
- W1840508780 cites W2083457841 @default.
- W1840508780 cites W2099589970 @default.
- W1840508780 cites W2101897262 @default.
- W1840508780 cites W2111326065 @default.
- W1840508780 cites W2122732537 @default.
- W1840508780 cites W2128995100 @default.
- W1840508780 cites W2132752562 @default.
- W1840508780 cites W2135749526 @default.
- W1840508780 cites W2138122982 @default.
- W1840508780 cites W2141708714 @default.
- W1840508780 cites W2143238378 @default.
- W1840508780 cites W2148171419 @default.
- W1840508780 cites W2158714788 @default.
- W1840508780 cites W2161910692 @default.
- W1840508780 cites W2163721943 @default.
- W1840508780 cites W2164971560 @default.
- W1840508780 cites W2167257571 @default.
- W1840508780 cites W2167350014 @default.
- W1840508780 cites W2170470690 @default.
- W1840508780 cites W2262414037 @default.
- W1840508780 cites W3199104097 @default.
- W1840508780 cites W4210347168 @default.
- W1840508780 cites W4233334497 @default.
- W1840508780 cites W4320301318 @default.
- W1840508780 doi "https://doi.org/10.1186/1471-2164-14-s3-s7" @default.
- W1840508780 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3665581" @default.
- W1840508780 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23819521" @default.
- W1840508780 hasPublicationYear "2013" @default.
- W1840508780 type Work @default.
- W1840508780 sameAs 1840508780 @default.
- W1840508780 citedByCount "146" @default.
- W1840508780 countsByYear W18405087802013 @default.
- W1840508780 countsByYear W18405087802014 @default.
- W1840508780 countsByYear W18405087802015 @default.
- W1840508780 countsByYear W18405087802016 @default.
- W1840508780 countsByYear W18405087802017 @default.
- W1840508780 countsByYear W18405087802018 @default.
- W1840508780 countsByYear W18405087802019 @default.
- W1840508780 countsByYear W18405087802020 @default.
- W1840508780 countsByYear W18405087802021 @default.
- W1840508780 countsByYear W18405087802022 @default.
- W1840508780 countsByYear W18405087802023 @default.
- W1840508780 crossrefType "journal-article" @default.
- W1840508780 hasAuthorship W1840508780A5006341480 @default.
- W1840508780 hasAuthorship W1840508780A5014672294 @default.
- W1840508780 hasAuthorship W1840508780A5059407081 @default.
- W1840508780 hasAuthorship W1840508780A5060146570 @default.
- W1840508780 hasAuthorship W1840508780A5073342778 @default.
- W1840508780 hasBestOaLocation W18405087801 @default.
- W1840508780 hasConcept C104317684 @default.
- W1840508780 hasConcept C119857082 @default.
- W1840508780 hasConcept C149129301 @default.
- W1840508780 hasConcept C2986374874 @default.
- W1840508780 hasConcept C41008148 @default.
- W1840508780 hasConcept C501734568 @default.
- W1840508780 hasConcept C54355233 @default.
- W1840508780 hasConcept C70721500 @default.
- W1840508780 hasConcept C75563809 @default.
- W1840508780 hasConcept C86803240 @default.
- W1840508780 hasConceptScore W1840508780C104317684 @default.
- W1840508780 hasConceptScore W1840508780C119857082 @default.
- W1840508780 hasConceptScore W1840508780C149129301 @default.
- W1840508780 hasConceptScore W1840508780C2986374874 @default.
- W1840508780 hasConceptScore W1840508780C41008148 @default.
- W1840508780 hasConceptScore W1840508780C501734568 @default.
- W1840508780 hasConceptScore W1840508780C54355233 @default.
- W1840508780 hasConceptScore W1840508780C70721500 @default.
- W1840508780 hasConceptScore W1840508780C75563809 @default.
- W1840508780 hasConceptScore W1840508780C86803240 @default.
- W1840508780 hasIssue "S3" @default.
- W1840508780 hasLocation W18405087801 @default.
- W1840508780 hasLocation W18405087802 @default.
- W1840508780 hasLocation W18405087803 @default.
- W1840508780 hasLocation W18405087804 @default.
- W1840508780 hasOpenAccess W1840508780 @default.
- W1840508780 hasPrimaryLocation W18405087801 @default.
- W1840508780 hasRelatedWork W1851998043 @default.
- W1840508780 hasRelatedWork W1979176079 @default.
- W1840508780 hasRelatedWork W2031079654 @default.