Matches in SemOpenAlex for { <https://semopenalex.org/work/W1840779908> ?p ?o ?g. }
- W1840779908 endingPage "1717" @default.
- W1840779908 startingPage "1712" @default.
- W1840779908 abstract "Quantification of myocardial perfusion reserve (MPR) is an emerging topic in nuclear cardiology with an expected diagnostic and prognostic incremental value, especially for patients with severe coronary artery disease. The advent of new dedicated solid-state cameras has opened new perspectives for perfusion quantitation in SPECT. We appraised the feasibility of perfusion reserve estimation using a cadmium zinc telluride camera in a cohort of multivessel patients and its pertinence with respect to angiographic data.Twenty-three patients with known multivessel coronary artery disease were prospectively enrolled. Dynamic SPECT acquisitions using (99m)Tc-tetrofosmin at rest and after vasodilator stress were performed using a dedicated cadmium zinc telluride camera. Reconstructed frames were automatically segmented to extract the vascular input function and the myocardial uptake curve. One-compartment kinetic modeling was used to estimate global and regional uptake values, and then myocardial blood flow was derived using the Renkin-Crone equation. Global and regional MPR was assessed using flow difference (stress - rest) and flow ratio (stress/rest). All patients underwent control coronary angiography within 4 wk, which served as the reference for MPR index assessment. Relevant angiographic findings included maximal stenosis and (for a subgroup of 26 vessels) invasive measurement of fractional flow reserve (FFR). A stenosis was considered obstructive if greater than 50% and an FFR abnormal if lower than 0.8.Global MPR correlated well with number of obstructed vessels (P < 0.001). After multivariate analysis, both regional flow ratio and flow difference were significantly associated with maximal stenosis (P < 0.001) and FFR (P < 0.001). Regional MPR indices were significantly different in obstructed and nonobstructed vessels (P < 0.001) and in vessels with normal and abnormal FFR (P < 0.001). With a cutoff of 2, the sensitivity, specificity, and accuracy of regional flow ratio were, respectively, 80%, 85%, and 81% for the detection of obstructed vessels and 89%, 82%, and 85% for the detection of abnormal FFR.Scintigraphic estimations of global and regional MPR in multivessel patients using a cadmium zinc telluride camera appear to correlate well with invasive angiographic findings, including maximal stenosis and FFR measurements." @default.
- W1840779908 created "2016-06-24" @default.
- W1840779908 creator A5006854735 @default.
- W1840779908 creator A5006885436 @default.
- W1840779908 creator A5028332146 @default.
- W1840779908 creator A5028589645 @default.
- W1840779908 creator A5035015657 @default.
- W1840779908 creator A5054923561 @default.
- W1840779908 creator A5063237282 @default.
- W1840779908 creator A5070884776 @default.
- W1840779908 date "2015-09-03" @default.
- W1840779908 modified "2023-10-15" @default.
- W1840779908 title "SPECT Myocardial Perfusion Reserve in Patients with Multivessel Coronary Disease: Correlation with Angiographic Findings and Invasive Fractional Flow Reserve Measurements" @default.
- W1840779908 cites W1971435966 @default.
- W1840779908 cites W1986107962 @default.
- W1840779908 cites W2001144086 @default.
- W1840779908 cites W2009096075 @default.
- W1840779908 cites W2014184577 @default.
- W1840779908 cites W2016902413 @default.
- W1840779908 cites W2017256807 @default.
- W1840779908 cites W2020403749 @default.
- W1840779908 cites W2025570788 @default.
- W1840779908 cites W2026346501 @default.
- W1840779908 cites W2035118147 @default.
- W1840779908 cites W2041005720 @default.
- W1840779908 cites W2052976009 @default.
- W1840779908 cites W2054874505 @default.
- W1840779908 cites W2061040105 @default.
- W1840779908 cites W2068668193 @default.
- W1840779908 cites W2072932976 @default.
- W1840779908 cites W2088107685 @default.
- W1840779908 cites W2101293566 @default.
- W1840779908 cites W2106705638 @default.
- W1840779908 cites W2107892208 @default.
- W1840779908 cites W2110879199 @default.
- W1840779908 cites W2112534549 @default.
- W1840779908 cites W2131974827 @default.
- W1840779908 cites W2140800188 @default.
- W1840779908 cites W2143738413 @default.
- W1840779908 cites W2151685421 @default.
- W1840779908 cites W2152682919 @default.
- W1840779908 cites W2161812533 @default.
- W1840779908 cites W2167072605 @default.
- W1840779908 cites W2168530812 @default.
- W1840779908 cites W2548871054 @default.
- W1840779908 cites W4254055030 @default.
- W1840779908 doi "https://doi.org/10.2967/jnumed.114.143164" @default.
- W1840779908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26338893" @default.
- W1840779908 hasPublicationYear "2015" @default.
- W1840779908 type Work @default.
- W1840779908 sameAs 1840779908 @default.
- W1840779908 citedByCount "100" @default.
- W1840779908 countsByYear W18407799082015 @default.
- W1840779908 countsByYear W18407799082016 @default.
- W1840779908 countsByYear W18407799082017 @default.
- W1840779908 countsByYear W18407799082018 @default.
- W1840779908 countsByYear W18407799082019 @default.
- W1840779908 countsByYear W18407799082020 @default.
- W1840779908 countsByYear W18407799082021 @default.
- W1840779908 countsByYear W18407799082022 @default.
- W1840779908 countsByYear W18407799082023 @default.
- W1840779908 crossrefType "journal-article" @default.
- W1840779908 hasAuthorship W1840779908A5006854735 @default.
- W1840779908 hasAuthorship W1840779908A5006885436 @default.
- W1840779908 hasAuthorship W1840779908A5028332146 @default.
- W1840779908 hasAuthorship W1840779908A5028589645 @default.
- W1840779908 hasAuthorship W1840779908A5035015657 @default.
- W1840779908 hasAuthorship W1840779908A5054923561 @default.
- W1840779908 hasAuthorship W1840779908A5063237282 @default.
- W1840779908 hasAuthorship W1840779908A5070884776 @default.
- W1840779908 hasBestOaLocation W18407799081 @default.
- W1840779908 hasConcept C119599485 @default.
- W1840779908 hasConcept C126322002 @default.
- W1840779908 hasConcept C126838900 @default.
- W1840779908 hasConcept C127413603 @default.
- W1840779908 hasConcept C146957229 @default.
- W1840779908 hasConcept C158846371 @default.
- W1840779908 hasConcept C164705383 @default.
- W1840779908 hasConcept C2776157398 @default.
- W1840779908 hasConcept C2776614250 @default.
- W1840779908 hasConcept C2777987666 @default.
- W1840779908 hasConcept C2778213512 @default.
- W1840779908 hasConcept C2778405248 @default.
- W1840779908 hasConcept C2778707443 @default.
- W1840779908 hasConcept C2780007028 @default.
- W1840779908 hasConcept C2989005 @default.
- W1840779908 hasConcept C3019004856 @default.
- W1840779908 hasConcept C500558357 @default.
- W1840779908 hasConcept C71924100 @default.
- W1840779908 hasConcept C94915269 @default.
- W1840779908 hasConceptScore W1840779908C119599485 @default.
- W1840779908 hasConceptScore W1840779908C126322002 @default.
- W1840779908 hasConceptScore W1840779908C126838900 @default.
- W1840779908 hasConceptScore W1840779908C127413603 @default.
- W1840779908 hasConceptScore W1840779908C146957229 @default.
- W1840779908 hasConceptScore W1840779908C158846371 @default.
- W1840779908 hasConceptScore W1840779908C164705383 @default.
- W1840779908 hasConceptScore W1840779908C2776157398 @default.