Matches in SemOpenAlex for { <https://semopenalex.org/work/W1840802971> ?p ?o ?g. }
- W1840802971 endingPage "1179" @default.
- W1840802971 startingPage "1162" @default.
- W1840802971 abstract "We extend a machine learning (ML) framework presented previously to model galaxy formation and evolution in a hierarchical universe using N-body + hydrodynamical simulations. In this work, we show that ML is a promising technique to study galaxy formation in the backdrop of a hydrodynamical simulation. We use the Illustris simulation to train and test various sophisticated ML algorithms. By using only essential dark matter halo physical properties and no merger history, our model predicts the gas mass, stellar mass, black hole mass, star formation rate, g − r colour, and stellar metallicity fairly robustly. Our results provide a unique and powerful phenomenological framework to explore the galaxy–halo connection that is built upon a solid hydrodynamical simulation. The promising reproduction of the listed galaxy properties demonstrably place ML as a promising and a significantly more computationally efficient tool to study small-scale structure formation. We find that ML mimics a full-blown hydrodynamical simulation surprisingly well in a computation time of mere minutes. The population of galaxies simulated by ML, while not numerically identical to Illustris, is statistically robust and physically consistent with Illustris galaxies and follows the same fundamental observational constraints. ML offers an intriguing and promising technique to create quick mock galaxy catalogues in the future." @default.
- W1840802971 created "2016-06-24" @default.
- W1840802971 creator A5018199600 @default.
- W1840802971 creator A5023471839 @default.
- W1840802971 creator A5043454829 @default.
- W1840802971 date "2016-02-01" @default.
- W1840802971 modified "2023-09-29" @default.
- W1840802971 title "Machine learning and cosmological simulations – II. Hydrodynamical simulations" @default.
- W1840802971 cites W1753711873 @default.
- W1840802971 cites W1771532212 @default.
- W1840802971 cites W1788719019 @default.
- W1840802971 cites W1853164862 @default.
- W1840802971 cites W1892812743 @default.
- W1840802971 cites W1911876284 @default.
- W1840802971 cites W1941318275 @default.
- W1840802971 cites W1965779302 @default.
- W1840802971 cites W1975549749 @default.
- W1840802971 cites W1987362922 @default.
- W1840802971 cites W1992067896 @default.
- W1840802971 cites W2005720343 @default.
- W1840802971 cites W2008877686 @default.
- W1840802971 cites W2015990127 @default.
- W1840802971 cites W2032231736 @default.
- W1840802971 cites W2032469582 @default.
- W1840802971 cites W2042540695 @default.
- W1840802971 cites W2042561599 @default.
- W1840802971 cites W2044738244 @default.
- W1840802971 cites W2049764493 @default.
- W1840802971 cites W2050990527 @default.
- W1840802971 cites W2056132907 @default.
- W1840802971 cites W2059302115 @default.
- W1840802971 cites W2068692692 @default.
- W1840802971 cites W2068928940 @default.
- W1840802971 cites W2073424199 @default.
- W1840802971 cites W2087423299 @default.
- W1840802971 cites W2099876653 @default.
- W1840802971 cites W2100514692 @default.
- W1840802971 cites W2101047548 @default.
- W1840802971 cites W2114564796 @default.
- W1840802971 cites W2119131940 @default.
- W1840802971 cites W2119936234 @default.
- W1840802971 cites W2131318936 @default.
- W1840802971 cites W2141709306 @default.
- W1840802971 cites W2143169117 @default.
- W1840802971 cites W2158622701 @default.
- W1840802971 cites W2160197565 @default.
- W1840802971 cites W2162475780 @default.
- W1840802971 cites W2204815181 @default.
- W1840802971 cites W2911964244 @default.
- W1840802971 cites W2953228579 @default.
- W1840802971 cites W3098221464 @default.
- W1840802971 cites W3098804119 @default.
- W1840802971 cites W3099188819 @default.
- W1840802971 cites W3101482359 @default.
- W1840802971 cites W3101771129 @default.
- W1840802971 cites W3102406364 @default.
- W1840802971 cites W3103101999 @default.
- W1840802971 cites W3103129927 @default.
- W1840802971 cites W3103459672 @default.
- W1840802971 cites W3105304390 @default.
- W1840802971 cites W3106456019 @default.
- W1840802971 cites W3121540997 @default.
- W1840802971 cites W3121912651 @default.
- W1840802971 cites W3122816622 @default.
- W1840802971 cites W3125748954 @default.
- W1840802971 cites W4300851986 @default.
- W1840802971 doi "https://doi.org/10.1093/mnras/stv2981" @default.
- W1840802971 hasPublicationYear "2016" @default.
- W1840802971 type Work @default.
- W1840802971 sameAs 1840802971 @default.
- W1840802971 citedByCount "40" @default.
- W1840802971 countsByYear W18408029712016 @default.
- W1840802971 countsByYear W18408029712017 @default.
- W1840802971 countsByYear W18408029712018 @default.
- W1840802971 countsByYear W18408029712019 @default.
- W1840802971 countsByYear W18408029712020 @default.
- W1840802971 countsByYear W18408029712021 @default.
- W1840802971 countsByYear W18408029712022 @default.
- W1840802971 countsByYear W18408029712023 @default.
- W1840802971 crossrefType "journal-article" @default.
- W1840802971 hasAuthorship W1840802971A5018199600 @default.
- W1840802971 hasAuthorship W1840802971A5023471839 @default.
- W1840802971 hasAuthorship W1840802971A5043454829 @default.
- W1840802971 hasBestOaLocation W18408029712 @default.
- W1840802971 hasConcept C121332964 @default.
- W1840802971 hasConcept C125857072 @default.
- W1840802971 hasConcept C159249277 @default.
- W1840802971 hasConcept C168589115 @default.
- W1840802971 hasConcept C174802034 @default.
- W1840802971 hasConcept C184665706 @default.
- W1840802971 hasConcept C44870925 @default.
- W1840802971 hasConcept C84999194 @default.
- W1840802971 hasConcept C88148261 @default.
- W1840802971 hasConcept C98444146 @default.
- W1840802971 hasConcept C99465377 @default.
- W1840802971 hasConceptScore W1840802971C121332964 @default.
- W1840802971 hasConceptScore W1840802971C125857072 @default.
- W1840802971 hasConceptScore W1840802971C159249277 @default.