Matches in SemOpenAlex for { <https://semopenalex.org/work/W1843304674> ?p ?o ?g. }
- W1843304674 endingPage "57" @default.
- W1843304674 startingPage "39" @default.
- W1843304674 abstract "This paper describes a framework that utilizes an adaptive-network-based fuzzy inference system to perform user-constrained pattern recognition on time-series data. Using a customizable fuzzy logic grammar, the architecture allows an analyst to capture domain expertise in a context-relevant manner. Fuzzy logic rules constructed by the analyst are used to perform feature extraction and influence the training of a neural network to perform pattern recognition. We demonstrate that the architecture is capable of performing noise-tolerant searches across multiple features on large volumes of time-series data. The experiments presented here are from the domain of stock analysis. We are able to create simple rule sets automatically to search a data warehouse of stocks to select stocks that exhibit desirable behaviours. Copyright © 2011 John Wiley & Sons, Ltd." @default.
- W1843304674 created "2016-06-24" @default.
- W1843304674 creator A5007892100 @default.
- W1843304674 creator A5049180880 @default.
- W1843304674 date "2011-01-01" @default.
- W1843304674 modified "2023-10-18" @default.
- W1843304674 title "Neuro-fuzzy time-series analysis of large-volume data" @default.
- W1843304674 cites W1520013951 @default.
- W1843304674 cites W153120503 @default.
- W1843304674 cites W1858254751 @default.
- W1843304674 cites W1965806369 @default.
- W1843304674 cites W1968447126 @default.
- W1843304674 cites W1974304087 @default.
- W1843304674 cites W1978520392 @default.
- W1843304674 cites W1980418485 @default.
- W1843304674 cites W1992852845 @default.
- W1843304674 cites W2001751530 @default.
- W1843304674 cites W2005346797 @default.
- W1843304674 cites W2011982579 @default.
- W1843304674 cites W2025110407 @default.
- W1843304674 cites W2037515210 @default.
- W1843304674 cites W2040070030 @default.
- W1843304674 cites W2042105482 @default.
- W1843304674 cites W2051030695 @default.
- W1843304674 cites W2067057029 @default.
- W1843304674 cites W2073912178 @default.
- W1843304674 cites W2080265874 @default.
- W1843304674 cites W2081737161 @default.
- W1843304674 cites W2082009375 @default.
- W1843304674 cites W2086694651 @default.
- W1843304674 cites W2104785403 @default.
- W1843304674 cites W2108360946 @default.
- W1843304674 cites W2109982940 @default.
- W1843304674 cites W2132885717 @default.
- W1843304674 cites W2137634615 @default.
- W1843304674 cites W2143560894 @default.
- W1843304674 cites W2145316193 @default.
- W1843304674 cites W2154326182 @default.
- W1843304674 cites W2162389778 @default.
- W1843304674 cites W2480301575 @default.
- W1843304674 cites W2542188015 @default.
- W1843304674 cites W3123403928 @default.
- W1843304674 cites W4230871672 @default.
- W1843304674 cites W4236242673 @default.
- W1843304674 cites W4241115065 @default.
- W1843304674 cites W4252837867 @default.
- W1843304674 doi "https://doi.org/10.1002/isaf.322" @default.
- W1843304674 hasPublicationYear "2011" @default.
- W1843304674 type Work @default.
- W1843304674 sameAs 1843304674 @default.
- W1843304674 citedByCount "10" @default.
- W1843304674 countsByYear W18433046742013 @default.
- W1843304674 countsByYear W18433046742014 @default.
- W1843304674 countsByYear W18433046742015 @default.
- W1843304674 countsByYear W18433046742017 @default.
- W1843304674 countsByYear W18433046742020 @default.
- W1843304674 countsByYear W18433046742022 @default.
- W1843304674 crossrefType "journal-article" @default.
- W1843304674 hasAuthorship W1843304674A5007892100 @default.
- W1843304674 hasAuthorship W1843304674A5049180880 @default.
- W1843304674 hasConcept C119857082 @default.
- W1843304674 hasConcept C123657996 @default.
- W1843304674 hasConcept C124101348 @default.
- W1843304674 hasConcept C134306372 @default.
- W1843304674 hasConcept C135572916 @default.
- W1843304674 hasConcept C142362112 @default.
- W1843304674 hasConcept C151406439 @default.
- W1843304674 hasConcept C153349607 @default.
- W1843304674 hasConcept C154945302 @default.
- W1843304674 hasConcept C186108316 @default.
- W1843304674 hasConcept C195975749 @default.
- W1843304674 hasConcept C2776214188 @default.
- W1843304674 hasConcept C29470771 @default.
- W1843304674 hasConcept C33923547 @default.
- W1843304674 hasConcept C36503486 @default.
- W1843304674 hasConcept C41008148 @default.
- W1843304674 hasConcept C50644808 @default.
- W1843304674 hasConcept C58166 @default.
- W1843304674 hasConceptScore W1843304674C119857082 @default.
- W1843304674 hasConceptScore W1843304674C123657996 @default.
- W1843304674 hasConceptScore W1843304674C124101348 @default.
- W1843304674 hasConceptScore W1843304674C134306372 @default.
- W1843304674 hasConceptScore W1843304674C135572916 @default.
- W1843304674 hasConceptScore W1843304674C142362112 @default.
- W1843304674 hasConceptScore W1843304674C151406439 @default.
- W1843304674 hasConceptScore W1843304674C153349607 @default.
- W1843304674 hasConceptScore W1843304674C154945302 @default.
- W1843304674 hasConceptScore W1843304674C186108316 @default.
- W1843304674 hasConceptScore W1843304674C195975749 @default.
- W1843304674 hasConceptScore W1843304674C2776214188 @default.
- W1843304674 hasConceptScore W1843304674C29470771 @default.
- W1843304674 hasConceptScore W1843304674C33923547 @default.
- W1843304674 hasConceptScore W1843304674C36503486 @default.
- W1843304674 hasConceptScore W1843304674C41008148 @default.
- W1843304674 hasConceptScore W1843304674C50644808 @default.
- W1843304674 hasConceptScore W1843304674C58166 @default.
- W1843304674 hasIssue "1" @default.
- W1843304674 hasLocation W18433046741 @default.