Matches in SemOpenAlex for { <https://semopenalex.org/work/W184534909> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W184534909 abstract "We consider the random design nonparametric regression problem when the response variable is subject to a general mode of missingness or censoring. A traditional approach to such problems is imputation, in which the missing or censored responses are replaced by well-chosen values, and then the resulting covariate/response data are plugged into algorithms designed for the uncensored setting. We present a general methodology for imputation with the property of double robustness, in that the method works well if either a parameter of the full data distribution (covariate and response distribution) or a parameter of the censoring mechanism is well approximated. These procedures can be used advantageously when something is known about the censoring mechanism (i.e. when the censoring variable is independent of the survival time and response, in survival analysis), while methods based on maximizing a likelihood ignore this relevant information. We show how the methodology can be applied to examples where the response variable is missing, corresponds to a counterfactual outcome in a point treatment study, is right censored, or is subject to censoring as in current status data. To deal with identifiability problems (i.e. the conditional mean survival time may not be available from right censored data because of a lack of information regarding the survival distribution’s tails), we show for these examples how the response of interest can be transformed, so that nonparametric regression remains a worthwhile endeavor. We remark on how our imputation procedure can be implemented by using general tools from efficiency theory and semiparametric estimation. General results are presented demonstrating how imputation procedures can accurately approximate regression functions when the imputed responses are entered into commonly used nonparametric regression procedures, including least squares estimators, complexity regularized least squares estimators, penalized least squares estimators, locally weighted average estimators, and estimators selected with cross-validation." @default.
- W184534909 created "2016-06-24" @default.
- W184534909 creator A5009049197 @default.
- W184534909 creator A5055341021 @default.
- W184534909 date "2005-01-01" @default.
- W184534909 modified "2023-09-26" @default.
- W184534909 title "A General Imputation Methodology for Nonparametric Regression with Censored Data" @default.
- W184534909 cites W1480376833 @default.
- W184534909 cites W1484867920 @default.
- W184534909 cites W1509689762 @default.
- W184534909 cites W1573240883 @default.
- W184534909 cites W1977314434 @default.
- W184534909 cites W2006785901 @default.
- W184534909 cites W2050127204 @default.
- W184534909 cites W2101895213 @default.
- W184534909 cites W2796930163 @default.
- W184534909 hasPublicationYear "2005" @default.
- W184534909 type Work @default.
- W184534909 sameAs 184534909 @default.
- W184534909 citedByCount "4" @default.
- W184534909 countsByYear W1845349092019 @default.
- W184534909 countsByYear W1845349092021 @default.
- W184534909 crossrefType "journal-article" @default.
- W184534909 hasAuthorship W184534909A5009049197 @default.
- W184534909 hasAuthorship W184534909A5055341021 @default.
- W184534909 hasConcept C102366305 @default.
- W184534909 hasConcept C105795698 @default.
- W184534909 hasConcept C119043178 @default.
- W184534909 hasConcept C137668524 @default.
- W184534909 hasConcept C149782125 @default.
- W184534909 hasConcept C152877465 @default.
- W184534909 hasConcept C185429906 @default.
- W184534909 hasConcept C2779915747 @default.
- W184534909 hasConcept C33114746 @default.
- W184534909 hasConcept C33923547 @default.
- W184534909 hasConcept C41008148 @default.
- W184534909 hasConcept C58041806 @default.
- W184534909 hasConcept C9357733 @default.
- W184534909 hasConcept C97379794 @default.
- W184534909 hasConceptScore W184534909C102366305 @default.
- W184534909 hasConceptScore W184534909C105795698 @default.
- W184534909 hasConceptScore W184534909C119043178 @default.
- W184534909 hasConceptScore W184534909C137668524 @default.
- W184534909 hasConceptScore W184534909C149782125 @default.
- W184534909 hasConceptScore W184534909C152877465 @default.
- W184534909 hasConceptScore W184534909C185429906 @default.
- W184534909 hasConceptScore W184534909C2779915747 @default.
- W184534909 hasConceptScore W184534909C33114746 @default.
- W184534909 hasConceptScore W184534909C33923547 @default.
- W184534909 hasConceptScore W184534909C41008148 @default.
- W184534909 hasConceptScore W184534909C58041806 @default.
- W184534909 hasConceptScore W184534909C9357733 @default.
- W184534909 hasConceptScore W184534909C97379794 @default.
- W184534909 hasLocation W1845349091 @default.
- W184534909 hasOpenAccess W184534909 @default.
- W184534909 hasPrimaryLocation W1845349091 @default.
- W184534909 hasRelatedWork W2036415434 @default.
- W184534909 hasRelatedWork W2053223987 @default.
- W184534909 hasRelatedWork W2096115181 @default.
- W184534909 hasRelatedWork W2118524793 @default.
- W184534909 hasRelatedWork W2171863564 @default.
- W184534909 hasRelatedWork W2300780153 @default.
- W184534909 hasRelatedWork W2332223858 @default.
- W184534909 hasRelatedWork W2414449019 @default.
- W184534909 hasRelatedWork W2559048560 @default.
- W184534909 hasRelatedWork W2560273048 @default.
- W184534909 hasRelatedWork W2572898634 @default.
- W184534909 hasRelatedWork W2743514101 @default.
- W184534909 hasRelatedWork W2801740986 @default.
- W184534909 hasRelatedWork W2879729131 @default.
- W184534909 hasRelatedWork W2978475158 @default.
- W184534909 hasRelatedWork W3102844537 @default.
- W184534909 hasRelatedWork W3123734541 @default.
- W184534909 hasRelatedWork W3123840196 @default.
- W184534909 hasRelatedWork W3141119199 @default.
- W184534909 hasRelatedWork W572434351 @default.
- W184534909 isParatext "false" @default.
- W184534909 isRetracted "false" @default.
- W184534909 magId "184534909" @default.
- W184534909 workType "article" @default.