Matches in SemOpenAlex for { <https://semopenalex.org/work/W1845687582> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1845687582 abstract "A new concept for detection of human faces is presented. An efficient approach to reduce the computation time taken by neural networks for the searching process is introduced. We combine both Fourier and wavelet transforms with cooperative modular neural networks (MNNs) to enhance the performance of the detection process. Such an approach is applied to identify human faces automatically in cluttered scenes. Here, neural networks are used to test whether a window of 20/spl times/20 pixels contains a face or not. The major difficulty in the learning process comes from the large database required for face/nonface images. A simple design for cooperative MNNs is presented to solve this problem by dividing these data into some groups. Such division results in reduction of computational complexity and thus decreasing the time and memory needed during the test of an image. In order to have a faster detection algorithm, a combination of the FFT and the wavelet transform is made in order to reduce the elapsed time during the test phase and enhance the detection performance. Feature measurements of the input faces are made through Fourier descriptors which are insensitive to rotation, translation and scaling. Such a feature is modified to reduce the number of neurons in the hidden layer. The second stage extracts wavelet coefficients that have been shown to provide advantages in terms of better representation for a given data to be compressed. Finally, the resulting vector is fed to one of five neural networks for face detection. Compared to previous work in face detection, the use of this combination reduces the number of neurons required for neural networks. Simulation results for the proposed algorithm show good performance on detecting faces with rotation, occlusion, noise, or change in illumination." @default.
- W1845687582 created "2016-06-24" @default.
- W1845687582 creator A5019464709 @default.
- W1845687582 creator A5042916753 @default.
- W1845687582 creator A5050406704 @default.
- W1845687582 date "2002-11-07" @default.
- W1845687582 modified "2023-09-23" @default.
- W1845687582 title "Modular neural networks for face detection" @default.
- W1845687582 cites W1558917119 @default.
- W1845687582 cites W1971345515 @default.
- W1845687582 cites W1979500821 @default.
- W1845687582 cites W1979836397 @default.
- W1845687582 cites W1997449813 @default.
- W1845687582 cites W2006846902 @default.
- W1845687582 cites W2046450072 @default.
- W1845687582 cites W2093886880 @default.
- W1845687582 cites W2110637837 @default.
- W1845687582 cites W2113341759 @default.
- W1845687582 cites W2118774738 @default.
- W1845687582 cites W2150866911 @default.
- W1845687582 cites W2150884987 @default.
- W1845687582 cites W2217896605 @default.
- W1845687582 cites W3035660467 @default.
- W1845687582 cites W2076567023 @default.
- W1845687582 doi "https://doi.org/10.1109/nrsc.2000.838925" @default.
- W1845687582 hasPublicationYear "2002" @default.
- W1845687582 type Work @default.
- W1845687582 sameAs 1845687582 @default.
- W1845687582 citedByCount "1" @default.
- W1845687582 crossrefType "proceedings-article" @default.
- W1845687582 hasAuthorship W1845687582A5019464709 @default.
- W1845687582 hasAuthorship W1845687582A5042916753 @default.
- W1845687582 hasAuthorship W1845687582A5050406704 @default.
- W1845687582 hasConcept C101468663 @default.
- W1845687582 hasConcept C111919701 @default.
- W1845687582 hasConcept C11413529 @default.
- W1845687582 hasConcept C138885662 @default.
- W1845687582 hasConcept C153180895 @default.
- W1845687582 hasConcept C154945302 @default.
- W1845687582 hasConcept C179799912 @default.
- W1845687582 hasConcept C196216189 @default.
- W1845687582 hasConcept C2776401178 @default.
- W1845687582 hasConcept C31510193 @default.
- W1845687582 hasConcept C31972630 @default.
- W1845687582 hasConcept C41008148 @default.
- W1845687582 hasConcept C41895202 @default.
- W1845687582 hasConcept C4641261 @default.
- W1845687582 hasConcept C47432892 @default.
- W1845687582 hasConcept C50644808 @default.
- W1845687582 hasConcept C75172450 @default.
- W1845687582 hasConceptScore W1845687582C101468663 @default.
- W1845687582 hasConceptScore W1845687582C111919701 @default.
- W1845687582 hasConceptScore W1845687582C11413529 @default.
- W1845687582 hasConceptScore W1845687582C138885662 @default.
- W1845687582 hasConceptScore W1845687582C153180895 @default.
- W1845687582 hasConceptScore W1845687582C154945302 @default.
- W1845687582 hasConceptScore W1845687582C179799912 @default.
- W1845687582 hasConceptScore W1845687582C196216189 @default.
- W1845687582 hasConceptScore W1845687582C2776401178 @default.
- W1845687582 hasConceptScore W1845687582C31510193 @default.
- W1845687582 hasConceptScore W1845687582C31972630 @default.
- W1845687582 hasConceptScore W1845687582C41008148 @default.
- W1845687582 hasConceptScore W1845687582C41895202 @default.
- W1845687582 hasConceptScore W1845687582C4641261 @default.
- W1845687582 hasConceptScore W1845687582C47432892 @default.
- W1845687582 hasConceptScore W1845687582C50644808 @default.
- W1845687582 hasConceptScore W1845687582C75172450 @default.
- W1845687582 hasLocation W18456875821 @default.
- W1845687582 hasOpenAccess W1845687582 @default.
- W1845687582 hasPrimaryLocation W18456875821 @default.
- W1845687582 hasRelatedWork W1529633393 @default.
- W1845687582 hasRelatedWork W1560697087 @default.
- W1845687582 hasRelatedWork W1582612722 @default.
- W1845687582 hasRelatedWork W2110866887 @default.
- W1845687582 hasRelatedWork W2128873999 @default.
- W1845687582 hasRelatedWork W2152633621 @default.
- W1845687582 hasRelatedWork W2532573070 @default.
- W1845687582 hasRelatedWork W2624789303 @default.
- W1845687582 hasRelatedWork W5801530 @default.
- W1845687582 hasRelatedWork W1970953946 @default.
- W1845687582 isParatext "false" @default.
- W1845687582 isRetracted "false" @default.
- W1845687582 magId "1845687582" @default.
- W1845687582 workType "article" @default.