Matches in SemOpenAlex for { <https://semopenalex.org/work/W1846172396> ?p ?o ?g. }
- W1846172396 endingPage "3597" @default.
- W1846172396 startingPage "3583" @default.
- W1846172396 abstract "The accuracy of the wavelet regression (WR) model in monthly streamflow forecasting is investigated in the study. The WR model is improved combining the two methods—the discrete wavelet transform (DWT) model and the linear regression (LR) model—for 1-month-ahead streamflow forecasting. In the first part of the study, the results of the WR model are compared with those of the single LR model. Monthly flow data from two stations, Gerdelli Station on Canakdere River and Isakoy Station on Goksudere River, in Eastern Black Sea region of Turkey are used in the study. The comparison results reveal that the WR model could increase the forecast accuracy of the LR model. In the second part of the study, the accuracy of the WR model is compared with those of the artificial neural networks (ANN) and auto-regressive (AR) models. On the basis of the results, the WR is found to be better than the ANN and AR models in monthly streamflow forecasting. Copyright © 2009 John Wiley & Sons, Ltd." @default.
- W1846172396 created "2016-06-24" @default.
- W1846172396 creator A5016315589 @default.
- W1846172396 date "2009-12-15" @default.
- W1846172396 modified "2023-10-14" @default.
- W1846172396 title "Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting" @default.
- W1846172396 cites W1955552469 @default.
- W1846172396 cites W1977556855 @default.
- W1846172396 cites W2000593229 @default.
- W1846172396 cites W2006599158 @default.
- W1846172396 cites W2012340228 @default.
- W1846172396 cites W2022426423 @default.
- W1846172396 cites W2024520223 @default.
- W1846172396 cites W2045251015 @default.
- W1846172396 cites W2059666149 @default.
- W1846172396 cites W2064732182 @default.
- W1846172396 cites W2073596094 @default.
- W1846172396 cites W2079801505 @default.
- W1846172396 cites W2082100660 @default.
- W1846172396 cites W2085054891 @default.
- W1846172396 cites W2089686343 @default.
- W1846172396 cites W2090596717 @default.
- W1846172396 cites W2090598548 @default.
- W1846172396 cites W2093762337 @default.
- W1846172396 cites W2094618865 @default.
- W1846172396 cites W2132984323 @default.
- W1846172396 cites W2137826289 @default.
- W1846172396 cites W2151870184 @default.
- W1846172396 cites W2168250549 @default.
- W1846172396 doi "https://doi.org/10.1002/hyp.7461" @default.
- W1846172396 hasPublicationYear "2009" @default.
- W1846172396 type Work @default.
- W1846172396 sameAs 1846172396 @default.
- W1846172396 citedByCount "52" @default.
- W1846172396 countsByYear W18461723962012 @default.
- W1846172396 countsByYear W18461723962013 @default.
- W1846172396 countsByYear W18461723962014 @default.
- W1846172396 countsByYear W18461723962015 @default.
- W1846172396 countsByYear W18461723962016 @default.
- W1846172396 countsByYear W18461723962017 @default.
- W1846172396 countsByYear W18461723962018 @default.
- W1846172396 countsByYear W18461723962019 @default.
- W1846172396 countsByYear W18461723962020 @default.
- W1846172396 countsByYear W18461723962021 @default.
- W1846172396 countsByYear W18461723962022 @default.
- W1846172396 countsByYear W18461723962023 @default.
- W1846172396 crossrefType "journal-article" @default.
- W1846172396 hasAuthorship W1846172396A5016315589 @default.
- W1846172396 hasConcept C105795698 @default.
- W1846172396 hasConcept C126645576 @default.
- W1846172396 hasConcept C152877465 @default.
- W1846172396 hasConcept C153294291 @default.
- W1846172396 hasConcept C154945302 @default.
- W1846172396 hasConcept C159877910 @default.
- W1846172396 hasConcept C205649164 @default.
- W1846172396 hasConcept C33923547 @default.
- W1846172396 hasConcept C39432304 @default.
- W1846172396 hasConcept C41008148 @default.
- W1846172396 hasConcept C47432892 @default.
- W1846172396 hasConcept C48921125 @default.
- W1846172396 hasConcept C50644808 @default.
- W1846172396 hasConcept C53739315 @default.
- W1846172396 hasConcept C58640448 @default.
- W1846172396 hasConcept C83546350 @default.
- W1846172396 hasConceptScore W1846172396C105795698 @default.
- W1846172396 hasConceptScore W1846172396C126645576 @default.
- W1846172396 hasConceptScore W1846172396C152877465 @default.
- W1846172396 hasConceptScore W1846172396C153294291 @default.
- W1846172396 hasConceptScore W1846172396C154945302 @default.
- W1846172396 hasConceptScore W1846172396C159877910 @default.
- W1846172396 hasConceptScore W1846172396C205649164 @default.
- W1846172396 hasConceptScore W1846172396C33923547 @default.
- W1846172396 hasConceptScore W1846172396C39432304 @default.
- W1846172396 hasConceptScore W1846172396C41008148 @default.
- W1846172396 hasConceptScore W1846172396C47432892 @default.
- W1846172396 hasConceptScore W1846172396C48921125 @default.
- W1846172396 hasConceptScore W1846172396C50644808 @default.
- W1846172396 hasConceptScore W1846172396C53739315 @default.
- W1846172396 hasConceptScore W1846172396C58640448 @default.
- W1846172396 hasConceptScore W1846172396C83546350 @default.
- W1846172396 hasIssue "25" @default.
- W1846172396 hasLocation W18461723961 @default.
- W1846172396 hasOpenAccess W1846172396 @default.
- W1846172396 hasPrimaryLocation W18461723961 @default.
- W1846172396 hasRelatedWork W2018697919 @default.
- W1846172396 hasRelatedWork W2060912888 @default.
- W1846172396 hasRelatedWork W2062105804 @default.
- W1846172396 hasRelatedWork W2325374573 @default.
- W1846172396 hasRelatedWork W2359865203 @default.
- W1846172396 hasRelatedWork W2375721435 @default.
- W1846172396 hasRelatedWork W247449116 @default.
- W1846172396 hasRelatedWork W3122861356 @default.
- W1846172396 hasRelatedWork W2184922845 @default.
- W1846172396 hasRelatedWork W2738033194 @default.
- W1846172396 hasVolume "23" @default.
- W1846172396 isParatext "false" @default.
- W1846172396 isRetracted "false" @default.
- W1846172396 magId "1846172396" @default.