Matches in SemOpenAlex for { <https://semopenalex.org/work/W1847142364> ?p ?o ?g. }
- W1847142364 endingPage "237" @default.
- W1847142364 startingPage "228" @default.
- W1847142364 abstract "Functional data, where samples are random functions, are increasingly common and important in a variety of applications, such as health care and traffic analysis. They are naturally high dimensional and lie along complex manifolds. These properties warrant use of the subspace assumption, but most state-of-the-art subspace learning algorithms are limited to linear or other simple settings. To address these challenges, we propose a new framework called Functional Subspace Clustering (FSC). FSC assumes that functional samples lie in deformed linear subspaces and formulates the subspace learning problem as a sparse regression over operators. The resulting problem can be efficiently solved via greedy variable selection, given access to a fast deformation oracle. We provide theoretical guarantees for FSC and show how it can be applied to time series with warped alignments. Experimental results on both synthetic data and real clinical time series show that FSC outperforms both standard time series clustering and state-of-the-art subspace clustering." @default.
- W1847142364 created "2016-06-24" @default.
- W1847142364 creator A5021293751 @default.
- W1847142364 creator A5043340297 @default.
- W1847142364 creator A5060074676 @default.
- W1847142364 creator A5079340751 @default.
- W1847142364 date "2015-07-06" @default.
- W1847142364 modified "2023-09-24" @default.
- W1847142364 title "Functional Subspace Clustering with Application to Time Series" @default.
- W1847142364 cites W147565337 @default.
- W1847142364 cites W1522684182 @default.
- W1847142364 cites W1560724230 @default.
- W1847142364 cites W1583788335 @default.
- W1847142364 cites W16794263 @default.
- W1847142364 cites W170732776 @default.
- W1847142364 cites W1983908352 @default.
- W1847142364 cites W1988997815 @default.
- W1847142364 cites W1989417520 @default.
- W1847142364 cites W1993612511 @default.
- W1847142364 cites W1993962865 @default.
- W1847142364 cites W2003217181 @default.
- W1847142364 cites W2011507178 @default.
- W1847142364 cites W2022291755 @default.
- W1847142364 cites W2037416370 @default.
- W1847142364 cites W2071949631 @default.
- W1847142364 cites W2078993594 @default.
- W1847142364 cites W2082497080 @default.
- W1847142364 cites W2097747115 @default.
- W1847142364 cites W2099302229 @default.
- W1847142364 cites W2103943817 @default.
- W1847142364 cites W2124958607 @default.
- W1847142364 cites W2126076163 @default.
- W1847142364 cites W2128160875 @default.
- W1847142364 cites W2132014503 @default.
- W1847142364 cites W2132350041 @default.
- W1847142364 cites W2132914434 @default.
- W1847142364 cites W2135291511 @default.
- W1847142364 cites W2140514146 @default.
- W1847142364 cites W2141346229 @default.
- W1847142364 cites W2164274563 @default.
- W1847142364 cites W2165874743 @default.
- W1847142364 cites W2189007323 @default.
- W1847142364 cites W2271721941 @default.
- W1847142364 cites W2294644361 @default.
- W1847142364 cites W2341627671 @default.
- W1847142364 cites W2398358711 @default.
- W1847142364 cites W2489909588 @default.
- W1847142364 cites W2514427383 @default.
- W1847142364 cites W2561426102 @default.
- W1847142364 cites W2963753660 @default.
- W1847142364 cites W3099880660 @default.
- W1847142364 cites W619520426 @default.
- W1847142364 cites W77473095 @default.
- W1847142364 cites W905619 @default.
- W1847142364 hasPublicationYear "2015" @default.
- W1847142364 type Work @default.
- W1847142364 sameAs 1847142364 @default.
- W1847142364 citedByCount "9" @default.
- W1847142364 countsByYear W18471423642016 @default.
- W1847142364 countsByYear W18471423642017 @default.
- W1847142364 countsByYear W18471423642018 @default.
- W1847142364 countsByYear W18471423642020 @default.
- W1847142364 crossrefType "proceedings-article" @default.
- W1847142364 hasAuthorship W1847142364A5021293751 @default.
- W1847142364 hasAuthorship W1847142364A5043340297 @default.
- W1847142364 hasAuthorship W1847142364A5060074676 @default.
- W1847142364 hasAuthorship W1847142364A5079340751 @default.
- W1847142364 hasConcept C11413529 @default.
- W1847142364 hasConcept C115903868 @default.
- W1847142364 hasConcept C12362212 @default.
- W1847142364 hasConcept C124101348 @default.
- W1847142364 hasConcept C143724316 @default.
- W1847142364 hasConcept C151730666 @default.
- W1847142364 hasConcept C153180895 @default.
- W1847142364 hasConcept C154945302 @default.
- W1847142364 hasConcept C184509293 @default.
- W1847142364 hasConcept C2524010 @default.
- W1847142364 hasConcept C32834561 @default.
- W1847142364 hasConcept C33923547 @default.
- W1847142364 hasConcept C41008148 @default.
- W1847142364 hasConcept C55166926 @default.
- W1847142364 hasConcept C73555534 @default.
- W1847142364 hasConcept C86803240 @default.
- W1847142364 hasConceptScore W1847142364C11413529 @default.
- W1847142364 hasConceptScore W1847142364C115903868 @default.
- W1847142364 hasConceptScore W1847142364C12362212 @default.
- W1847142364 hasConceptScore W1847142364C124101348 @default.
- W1847142364 hasConceptScore W1847142364C143724316 @default.
- W1847142364 hasConceptScore W1847142364C151730666 @default.
- W1847142364 hasConceptScore W1847142364C153180895 @default.
- W1847142364 hasConceptScore W1847142364C154945302 @default.
- W1847142364 hasConceptScore W1847142364C184509293 @default.
- W1847142364 hasConceptScore W1847142364C2524010 @default.
- W1847142364 hasConceptScore W1847142364C32834561 @default.
- W1847142364 hasConceptScore W1847142364C33923547 @default.
- W1847142364 hasConceptScore W1847142364C41008148 @default.
- W1847142364 hasConceptScore W1847142364C55166926 @default.
- W1847142364 hasConceptScore W1847142364C73555534 @default.