Matches in SemOpenAlex for { <https://semopenalex.org/work/W1848654034> ?p ?o ?g. }
- W1848654034 abstract "This paper considers the problem of networks reconstruction from heterogeneous data using a Gaussian Graphical Mixture Model (GGMM). It is well known that parameter estimation in this context is challenging due to large numbers of variables coupled with the degeneracy of the likelihood. We propose as a solution a penalized maximum likelihood technique by imposing an $l_{1}$ penalty on the precision matrix. Our approach shrinks the parameters thereby resulting in better identifiability and variable selection. We use the Expectation Maximization (EM) algorithm which involves the graphical LASSO to estimate the mixing coefficients and the precision matrices. We show that under certain regularity conditions the Penalized Maximum Likelihood (PML) estimates are consistent. We demonstrate the performance of the PML estimator through simulations and we show the utility of our method for high dimensional data analysis in a genomic application." @default.
- W1848654034 created "2016-06-24" @default.
- W1848654034 creator A5068403840 @default.
- W1848654034 creator A5076335266 @default.
- W1848654034 date "2013-08-15" @default.
- W1848654034 modified "2023-09-25" @default.
- W1848654034 title "High dimensional Sparse Gaussian Graphical Mixture Model" @default.
- W1848654034 cites W1965342088 @default.
- W1848654034 cites W1966502880 @default.
- W1848654034 cites W2016315398 @default.
- W1848654034 cites W2034767804 @default.
- W1848654034 cites W2044579390 @default.
- W1848654034 cites W2049633694 @default.
- W1848654034 cites W2052793367 @default.
- W1848654034 cites W2053061982 @default.
- W1848654034 cites W2073307618 @default.
- W1848654034 cites W2081746825 @default.
- W1848654034 cites W2082503527 @default.
- W1848654034 cites W2091982107 @default.
- W1848654034 cites W2108435369 @default.
- W1848654034 cites W2109820980 @default.
- W1848654034 cites W2132555912 @default.
- W1848654034 cites W2144664383 @default.
- W1848654034 cites W2152012752 @default.
- W1848654034 cites W2165892974 @default.
- W1848654034 cites W346145372 @default.
- W1848654034 hasPublicationYear "2013" @default.
- W1848654034 type Work @default.
- W1848654034 sameAs 1848654034 @default.
- W1848654034 citedByCount "9" @default.
- W1848654034 countsByYear W18486540342014 @default.
- W1848654034 countsByYear W18486540342015 @default.
- W1848654034 countsByYear W18486540342017 @default.
- W1848654034 countsByYear W18486540342018 @default.
- W1848654034 countsByYear W18486540342020 @default.
- W1848654034 countsByYear W18486540342021 @default.
- W1848654034 crossrefType "posted-content" @default.
- W1848654034 hasAuthorship W1848654034A5068403840 @default.
- W1848654034 hasAuthorship W1848654034A5076335266 @default.
- W1848654034 hasConcept C105795698 @default.
- W1848654034 hasConcept C106487976 @default.
- W1848654034 hasConcept C11413529 @default.
- W1848654034 hasConcept C121332964 @default.
- W1848654034 hasConcept C122770356 @default.
- W1848654034 hasConcept C126255220 @default.
- W1848654034 hasConcept C136764020 @default.
- W1848654034 hasConcept C151730666 @default.
- W1848654034 hasConcept C155846161 @default.
- W1848654034 hasConcept C159985019 @default.
- W1848654034 hasConcept C163716315 @default.
- W1848654034 hasConcept C167928553 @default.
- W1848654034 hasConcept C182081679 @default.
- W1848654034 hasConcept C185429906 @default.
- W1848654034 hasConcept C192562407 @default.
- W1848654034 hasConcept C2777727622 @default.
- W1848654034 hasConcept C2779343474 @default.
- W1848654034 hasConcept C28826006 @default.
- W1848654034 hasConcept C33923547 @default.
- W1848654034 hasConcept C37616216 @default.
- W1848654034 hasConcept C41008148 @default.
- W1848654034 hasConcept C49781872 @default.
- W1848654034 hasConcept C60644358 @default.
- W1848654034 hasConcept C61224824 @default.
- W1848654034 hasConcept C62520636 @default.
- W1848654034 hasConcept C86803240 @default.
- W1848654034 hasConcept C89106044 @default.
- W1848654034 hasConcept C93959086 @default.
- W1848654034 hasConceptScore W1848654034C105795698 @default.
- W1848654034 hasConceptScore W1848654034C106487976 @default.
- W1848654034 hasConceptScore W1848654034C11413529 @default.
- W1848654034 hasConceptScore W1848654034C121332964 @default.
- W1848654034 hasConceptScore W1848654034C122770356 @default.
- W1848654034 hasConceptScore W1848654034C126255220 @default.
- W1848654034 hasConceptScore W1848654034C136764020 @default.
- W1848654034 hasConceptScore W1848654034C151730666 @default.
- W1848654034 hasConceptScore W1848654034C155846161 @default.
- W1848654034 hasConceptScore W1848654034C159985019 @default.
- W1848654034 hasConceptScore W1848654034C163716315 @default.
- W1848654034 hasConceptScore W1848654034C167928553 @default.
- W1848654034 hasConceptScore W1848654034C182081679 @default.
- W1848654034 hasConceptScore W1848654034C185429906 @default.
- W1848654034 hasConceptScore W1848654034C192562407 @default.
- W1848654034 hasConceptScore W1848654034C2777727622 @default.
- W1848654034 hasConceptScore W1848654034C2779343474 @default.
- W1848654034 hasConceptScore W1848654034C28826006 @default.
- W1848654034 hasConceptScore W1848654034C33923547 @default.
- W1848654034 hasConceptScore W1848654034C37616216 @default.
- W1848654034 hasConceptScore W1848654034C41008148 @default.
- W1848654034 hasConceptScore W1848654034C49781872 @default.
- W1848654034 hasConceptScore W1848654034C60644358 @default.
- W1848654034 hasConceptScore W1848654034C61224824 @default.
- W1848654034 hasConceptScore W1848654034C62520636 @default.
- W1848654034 hasConceptScore W1848654034C86803240 @default.
- W1848654034 hasConceptScore W1848654034C89106044 @default.
- W1848654034 hasConceptScore W1848654034C93959086 @default.
- W1848654034 hasLocation W18486540341 @default.
- W1848654034 hasOpenAccess W1848654034 @default.
- W1848654034 hasPrimaryLocation W18486540341 @default.
- W1848654034 hasRelatedWork W100319792 @default.
- W1848654034 hasRelatedWork W116192324 @default.