Matches in SemOpenAlex for { <https://semopenalex.org/work/W1850767029> ?p ?o ?g. }
- W1850767029 abstract "Due to their high swelling ability, high water retention capacity and low permeability, compacted bentoniteshave been considered as a key component of cover lining systems for storage of low and medium level toxicwastes and as barrier and backfilling materials for long-term safe storage of high level toxic waste in manycountries. This thesis presents an experimental, theoretical and numerical study of thermo-hydromechanical-chemical behaviour of MX80 bentonite in geotechnical applications.The determination of swelling pressures of compacted bentonites is an important aspect of most bentonitebasedbarrier systems. Swelling pressures of bentonites are usually determined in the laboratory underconstant volume conditions using oedometers. Powdered bentonites are usually compacted in stainless steelcylindrical specimen rings and tested immediately after the compaction process is completed. The swellingpressures thus measured are influenced by some post compaction residual stresses. However, bentonites inthe form of pellets and bricks are prepared and used in repository conditions that, in turn, are free from anypost compaction residual stresses. The influence of post compaction residual stress on swelling pressures ofcompacted bentonites for a range of dry density that are of interest has not been explored in the past. Suchstudies are of potential interest for the safe and efficient designs of toxic waste disposal repositories. Manyof the waste repositories are commissioned in locations where the ground water either contains significantamount of salts or the repositories are anticipated to receive saline water from sea. Additionally, in somecases, the wastes that are disposed emit very high temperatures (e.g. spent fuel). Under these repositoryconditions, compacted bentonite barriers are subjected to both thermal and hydraulic loadings at oppositeboundaries. A detailed study devoted to appreciate the combined influence of an elevated temperature, bulkfluid type and solute transport due to both hydraulic and thermal gradients are necessary to better theunderstanding of the mechanical behaviour of compacted bentonites in many practical engineeringproblems.Constant volume swelling pressure tests were carried out on compacted MX80 bentonite specimens in orderto study the influence of post compaction residual stress, electrolyte concentration and temperature (forisothermal conditions) on the swelling pressure. The dry density of the bentonite was varied between 1.1 to1.9 Mg/m3 to cover a wide range of compaction conditions. Theoretical assessments of swelling pressureswere made using the Gouy-Chapman diffuse double layer theory and the Stern theory, as applicable tointeracting clay platelet systems. Further, the experimental and the theoretical swelling pressures werecompared in order to bring out the applicability of the electrical theories in assessing swelling pressures ofbentonites for both compacted saturated and initially saturated slurried conditions. A series of thermal andthermo-hydraulic tests were carried out on bentonite specimens under laboratory scale settings. During thethermal tests, temperatures of 85 and 25 °C were applied at the bottom and top ends of the specimens,respectively. During the thermo-hydraulic tests, in addition to unequal temperature at opposite ends, distilledwater was supplied from the top end of the specimens. The temperature and the relative humidity weremonitored along predetermined depths of the specimens during both types of testing methods. The swellingpressure variations were monitored at the opposite end of the heat source. Changes in water content, drydensity and concentrations of cations and anions along predetermined depths of the specimens weremeasured after termination of each of the tests. A thermo-hydro-mechanical finite element simulation wasundertaken specifically for swelling pressures using the numerical code COMPASS (COde for ModellingPArtially Saturated Soils). Further, the experimental and the simulated results were compared both forthermal and thermo-hydraulic boundary conditions.Compacted bentonite specimens with post compaction residual stresses exhibited lesser swelling pressuresas compared to their stress released counterparts. Agreements between the calculated swelling pressuresfrom the Stern theory and the experimental swelling pressure results were found to be reasonable forcompaction dry densities of less than 1.45 Mg/m3, whereas at higher dry densities, agreements between themeasured swelling pressures and those calculated from the electrical theories were found to be poor.Conversely, compressibility behaviour of initially saturated slurried bentonites was found to be capturedwell by the electrical theories. On account of vapour flow under thermal gradients, compacted bentonitespecimens exhibited swelling pressures at the opposite end of the heat source. The measured swellingpressure for the thermal gradient adopted varied between 0.5 to 1.2 MPa, whereas greater swelling pressureswere noted due to an applied thermo-hydraulic gradient. Evaporation, condensation, diffusion and advectionprocesses influenced the distribution of ions in compacted bentonite when subjected to both thermal andthermo-hydraulic gradients. The finite element code, COMPASS, enabled assessing changes in suction andswelling pressure of compacted bentonite satisfactorily under both thermal and thermo-hydraulic hydraulicgradients." @default.
- W1850767029 created "2016-06-24" @default.
- W1850767029 creator A5018500549 @default.
- W1850767029 date "2011-01-01" @default.
- W1850767029 modified "2023-09-24" @default.
- W1850767029 title "Coupled thermo-hydro-mechanical-chemical behaviour of MX80 bentonite in geotechnical applications" @default.
- W1850767029 cites W113831185 @default.
- W1850767029 cites W1481482433 @default.
- W1850767029 cites W1483165605 @default.
- W1850767029 cites W1487214297 @default.
- W1850767029 cites W1490005156 @default.
- W1850767029 cites W1492403865 @default.
- W1850767029 cites W149486173 @default.
- W1850767029 cites W1513695886 @default.
- W1850767029 cites W1546104559 @default.
- W1850767029 cites W1548854113 @default.
- W1850767029 cites W1572709168 @default.
- W1850767029 cites W1586080520 @default.
- W1850767029 cites W1600303890 @default.
- W1850767029 cites W1604201662 @default.
- W1850767029 cites W1661611782 @default.
- W1850767029 cites W1693096119 @default.
- W1850767029 cites W1722618992 @default.
- W1850767029 cites W1738747013 @default.
- W1850767029 cites W1766260398 @default.
- W1850767029 cites W182084649 @default.
- W1850767029 cites W187993165 @default.
- W1850767029 cites W190359445 @default.
- W1850767029 cites W1950081252 @default.
- W1850767029 cites W1963595455 @default.
- W1850767029 cites W1966675127 @default.
- W1850767029 cites W1967579525 @default.
- W1850767029 cites W1967688649 @default.
- W1850767029 cites W1967728877 @default.
- W1850767029 cites W1967753536 @default.
- W1850767029 cites W1967930946 @default.
- W1850767029 cites W1969437416 @default.
- W1850767029 cites W1969447674 @default.
- W1850767029 cites W1970222841 @default.
- W1850767029 cites W1972236254 @default.
- W1850767029 cites W1973026387 @default.
- W1850767029 cites W1974101915 @default.
- W1850767029 cites W1974114486 @default.
- W1850767029 cites W1974195289 @default.
- W1850767029 cites W1975048101 @default.
- W1850767029 cites W197555032 @default.
- W1850767029 cites W1975562590 @default.
- W1850767029 cites W1976393569 @default.
- W1850767029 cites W1976740514 @default.
- W1850767029 cites W1979189330 @default.
- W1850767029 cites W1980201387 @default.
- W1850767029 cites W1981472419 @default.
- W1850767029 cites W1981525306 @default.
- W1850767029 cites W1982101435 @default.
- W1850767029 cites W1982448001 @default.
- W1850767029 cites W1984510705 @default.
- W1850767029 cites W1985726947 @default.
- W1850767029 cites W1985838717 @default.
- W1850767029 cites W1987607393 @default.
- W1850767029 cites W1988832750 @default.
- W1850767029 cites W1989712990 @default.
- W1850767029 cites W1990050279 @default.
- W1850767029 cites W1991942693 @default.
- W1850767029 cites W1992552603 @default.
- W1850767029 cites W1992561869 @default.
- W1850767029 cites W1992583387 @default.
- W1850767029 cites W1992594630 @default.
- W1850767029 cites W1993293532 @default.
- W1850767029 cites W1993361711 @default.
- W1850767029 cites W1994139714 @default.
- W1850767029 cites W1994389143 @default.
- W1850767029 cites W1995071838 @default.
- W1850767029 cites W1995886740 @default.
- W1850767029 cites W1996023740 @default.
- W1850767029 cites W1998011768 @default.
- W1850767029 cites W1998019126 @default.
- W1850767029 cites W1998743014 @default.
- W1850767029 cites W1999702418 @default.
- W1850767029 cites W1999755637 @default.
- W1850767029 cites W2001083612 @default.
- W1850767029 cites W2002686820 @default.
- W1850767029 cites W2002745844 @default.
- W1850767029 cites W2003426800 @default.
- W1850767029 cites W2003515229 @default.
- W1850767029 cites W2007808204 @default.
- W1850767029 cites W2007934806 @default.
- W1850767029 cites W2008241046 @default.
- W1850767029 cites W2008353832 @default.
- W1850767029 cites W2009018571 @default.
- W1850767029 cites W2011450795 @default.
- W1850767029 cites W2012132825 @default.
- W1850767029 cites W2014134850 @default.
- W1850767029 cites W2014282701 @default.
- W1850767029 cites W2015125207 @default.
- W1850767029 cites W2015215757 @default.
- W1850767029 cites W2015736916 @default.
- W1850767029 cites W2016504825 @default.
- W1850767029 cites W2018459722 @default.
- W1850767029 cites W2018836871 @default.
- W1850767029 cites W2019860840 @default.