Matches in SemOpenAlex for { <https://semopenalex.org/work/W185087488> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W185087488 abstract "We propose a new model for describing the evolution of scalar optical pulses in Kerr-type waveguides. The (normalized) wave envelope u satisfies a governing equation that is of the nonlinear Helmholtz type, where the space and time coordinates are denoted by ζ and τ, respectively, α is related to the group velocity, and s = ±1 flags the anomalous/normal temporal dispersion regime. The first term includes spatial dispersion. There are two main contributions to this term in semiconductor waveguides: the propagation contribution (inherent to any electromagnetic mode propagating off-axis) and a recently-proposed material contribution that arises from field-exciton coupling [1]. We will report new solutions and pulse properties, arising from when the universal slowly-varying envelope approximation and the consequent Galilean boost to a local time frame are abandoned. Together, these two simplifications lead to a theory of optical pulses based on the nonlinear Schrodinger equation, with all its advantages and disadvantages. Here, we develop a Helmholtz formalism and uncover a broad range of new physical predictions.The model is a temporal analogue of the spatial nonlinear Helmholtz equation [2]. Hence, one may deploy mathematical and computational techniques that are similar to those used over recent years to analyse broad scalar nonlinear beams. We have derived exact analytical bright and dark solitons ofthe model equation. The geometry of these new pulse solutions, which complement their spatial counterparts,has been explored in detail. They exhibit generic features (for instance, one encounters both forward and backward-propagating solution families), and map directly onto a Lorentz-type transformation. More specifically, we have discovered that the velocity combination rule for Helmholtz soliton pulses is formally identical to that encountered in relativistic particle mechanics. Further analytical work has led to the derivation of new invariance laws and conserved quantities. Importantly, the predictions of conventional pulse theory can be recovered in an appropriate simultaneous multiple limit.Recent computations, in conjunction with linear analysis and nonlinear stability criteria, have predicted that the soliton pulses of the model equation tend to be robust against perturbations to their temporal shape. This key result provides compelling evidence for the stability of Helmholtz pulses in general. Figure 1. Perturbed (a) bright and (b) dark pulses evolve into stationary solitons of the model equation.References[1] Biancalana F and Creatore C, Opt. Exp. 16, 14882–93 (2008).[2] Christian J M, McDonald G S and Chamorro-Posada P, J. Opt. Soc. Am. B 26, 2323–30 (2009)." @default.
- W185087488 created "2016-06-24" @default.
- W185087488 creator A5001118236 @default.
- W185087488 creator A5027749509 @default.
- W185087488 creator A5066567431 @default.
- W185087488 creator A5080824340 @default.
- W185087488 date "2010-08-23" @default.
- W185087488 modified "2023-09-27" @default.
- W185087488 title "Optical pulses with spatial dispersion – solitons & relativity" @default.
- W185087488 hasPublicationYear "2010" @default.
- W185087488 type Work @default.
- W185087488 sameAs 185087488 @default.
- W185087488 citedByCount "0" @default.
- W185087488 crossrefType "journal-article" @default.
- W185087488 hasAuthorship W185087488A5001118236 @default.
- W185087488 hasAuthorship W185087488A5027749509 @default.
- W185087488 hasAuthorship W185087488A5066567431 @default.
- W185087488 hasAuthorship W185087488A5080824340 @default.
- W185087488 hasConcept C110521144 @default.
- W185087488 hasConcept C121332964 @default.
- W185087488 hasConcept C158622935 @default.
- W185087488 hasConcept C178596936 @default.
- W185087488 hasConcept C182310444 @default.
- W185087488 hasConcept C18591234 @default.
- W185087488 hasConcept C2524010 @default.
- W185087488 hasConcept C27592594 @default.
- W185087488 hasConcept C33923547 @default.
- W185087488 hasConcept C520434653 @default.
- W185087488 hasConcept C57691317 @default.
- W185087488 hasConcept C62520636 @default.
- W185087488 hasConcept C74650414 @default.
- W185087488 hasConceptScore W185087488C110521144 @default.
- W185087488 hasConceptScore W185087488C121332964 @default.
- W185087488 hasConceptScore W185087488C158622935 @default.
- W185087488 hasConceptScore W185087488C178596936 @default.
- W185087488 hasConceptScore W185087488C182310444 @default.
- W185087488 hasConceptScore W185087488C18591234 @default.
- W185087488 hasConceptScore W185087488C2524010 @default.
- W185087488 hasConceptScore W185087488C27592594 @default.
- W185087488 hasConceptScore W185087488C33923547 @default.
- W185087488 hasConceptScore W185087488C520434653 @default.
- W185087488 hasConceptScore W185087488C57691317 @default.
- W185087488 hasConceptScore W185087488C62520636 @default.
- W185087488 hasConceptScore W185087488C74650414 @default.
- W185087488 hasLocation W1850874881 @default.
- W185087488 hasOpenAccess W185087488 @default.
- W185087488 hasPrimaryLocation W1850874881 @default.
- W185087488 hasRelatedWork W1120611873 @default.
- W185087488 hasRelatedWork W1497581781 @default.
- W185087488 hasRelatedWork W1501517840 @default.
- W185087488 hasRelatedWork W1599539737 @default.
- W185087488 hasRelatedWork W1966639977 @default.
- W185087488 hasRelatedWork W1976172427 @default.
- W185087488 hasRelatedWork W1997756372 @default.
- W185087488 hasRelatedWork W2052008768 @default.
- W185087488 hasRelatedWork W2080935953 @default.
- W185087488 hasRelatedWork W2339935279 @default.
- W185087488 hasRelatedWork W2463960330 @default.
- W185087488 hasRelatedWork W2883845905 @default.
- W185087488 hasRelatedWork W2953256538 @default.
- W185087488 hasRelatedWork W2953327094 @default.
- W185087488 hasRelatedWork W2990604215 @default.
- W185087488 hasRelatedWork W2996519589 @default.
- W185087488 hasRelatedWork W3006097313 @default.
- W185087488 hasRelatedWork W3023495288 @default.
- W185087488 hasRelatedWork W3103468894 @default.
- W185087488 hasRelatedWork W3148662130 @default.
- W185087488 isParatext "false" @default.
- W185087488 isRetracted "false" @default.
- W185087488 magId "185087488" @default.
- W185087488 workType "article" @default.