Matches in SemOpenAlex for { <https://semopenalex.org/work/W1853204249> ?p ?o ?g. }
- W1853204249 abstract "The brain interprets ambiguous sensory information faster and more reliably than modern computers, using neurons that are slower and less reliable than logic gates. But Bayesian inference, which underpins many computational models of perception and cognition, appears computationally challenging even given modern transistor speeds and energy budgets. The computational principles and structures needed to narrow this gap are unknown. Here we show how to build fast Bayesian computing machines using intentionally stochastic, digital parts, narrowing this efficiency gap by multiple orders of magnitude. We find that by connecting stochastic digital components according to simple mathematical rules, one can build massively parallel, low precision circuits that solve Bayesian inference problems and are compatible with the Poisson firing statistics of cortical neurons. We evaluate circuits for depth and motion perception, perceptual learning and causal reasoning, each performing inference over 10,000+ latent variables in real time - a 1,000x speed advantage over commodity microprocessors. These results suggest a new role for randomness in the engineering and reverse-engineering of intelligent computation." @default.
- W1853204249 created "2016-06-24" @default.
- W1853204249 creator A5002781291 @default.
- W1853204249 creator A5068340465 @default.
- W1853204249 date "2014-02-20" @default.
- W1853204249 modified "2023-09-27" @default.
- W1853204249 title "Building fast Bayesian computing machines out of intentionally stochastic, digital parts." @default.
- W1853204249 cites W1497546894 @default.
- W1853204249 cites W1607061301 @default.
- W1853204249 cites W1645305843 @default.
- W1853204249 cites W1967804600 @default.
- W1853204249 cites W1972309199 @default.
- W1853204249 cites W1978319180 @default.
- W1853204249 cites W1980064715 @default.
- W1853204249 cites W1981578159 @default.
- W1853204249 cites W1999901857 @default.
- W1853204249 cites W2012117576 @default.
- W1853204249 cites W2017357931 @default.
- W1853204249 cites W2020999234 @default.
- W1853204249 cites W2053619330 @default.
- W1853204249 cites W2056760934 @default.
- W1853204249 cites W2060280062 @default.
- W1853204249 cites W2103452702 @default.
- W1853204249 cites W2107884096 @default.
- W1853204249 cites W2117747343 @default.
- W1853204249 cites W2118354656 @default.
- W1853204249 cites W2120636621 @default.
- W1853204249 cites W2121211200 @default.
- W1853204249 cites W2121942050 @default.
- W1853204249 cites W2134807578 @default.
- W1853204249 cites W2135194391 @default.
- W1853204249 cites W2137813581 @default.
- W1853204249 cites W2139032973 @default.
- W1853204249 cites W2142868932 @default.
- W1853204249 cites W2145695845 @default.
- W1853204249 cites W2147231083 @default.
- W1853204249 cites W2148596731 @default.
- W1853204249 cites W2159080219 @default.
- W1853204249 cites W2162679451 @default.
- W1853204249 cites W2163630896 @default.
- W1853204249 cites W2169213530 @default.
- W1853204249 cites W2169757251 @default.
- W1853204249 cites W2171278097 @default.
- W1853204249 cites W2336416123 @default.
- W1853204249 cites W2338694247 @default.
- W1853204249 cites W2539850963 @default.
- W1853204249 cites W2570617923 @default.
- W1853204249 hasPublicationYear "2014" @default.
- W1853204249 type Work @default.
- W1853204249 sameAs 1853204249 @default.
- W1853204249 citedByCount "3" @default.
- W1853204249 countsByYear W18532042492014 @default.
- W1853204249 countsByYear W18532042492020 @default.
- W1853204249 crossrefType "posted-content" @default.
- W1853204249 hasAuthorship W1853204249A5002781291 @default.
- W1853204249 hasAuthorship W1853204249A5068340465 @default.
- W1853204249 hasConcept C105795698 @default.
- W1853204249 hasConcept C107673813 @default.
- W1853204249 hasConcept C113775141 @default.
- W1853204249 hasConcept C11413529 @default.
- W1853204249 hasConcept C119857082 @default.
- W1853204249 hasConcept C125112378 @default.
- W1853204249 hasConcept C154945302 @default.
- W1853204249 hasConcept C160234255 @default.
- W1853204249 hasConcept C173608175 @default.
- W1853204249 hasConcept C190475519 @default.
- W1853204249 hasConcept C2776214188 @default.
- W1853204249 hasConcept C2780971903 @default.
- W1853204249 hasConcept C33923547 @default.
- W1853204249 hasConcept C41008148 @default.
- W1853204249 hasConcept C45374587 @default.
- W1853204249 hasConcept C80444323 @default.
- W1853204249 hasConceptScore W1853204249C105795698 @default.
- W1853204249 hasConceptScore W1853204249C107673813 @default.
- W1853204249 hasConceptScore W1853204249C113775141 @default.
- W1853204249 hasConceptScore W1853204249C11413529 @default.
- W1853204249 hasConceptScore W1853204249C119857082 @default.
- W1853204249 hasConceptScore W1853204249C125112378 @default.
- W1853204249 hasConceptScore W1853204249C154945302 @default.
- W1853204249 hasConceptScore W1853204249C160234255 @default.
- W1853204249 hasConceptScore W1853204249C173608175 @default.
- W1853204249 hasConceptScore W1853204249C190475519 @default.
- W1853204249 hasConceptScore W1853204249C2776214188 @default.
- W1853204249 hasConceptScore W1853204249C2780971903 @default.
- W1853204249 hasConceptScore W1853204249C33923547 @default.
- W1853204249 hasConceptScore W1853204249C41008148 @default.
- W1853204249 hasConceptScore W1853204249C45374587 @default.
- W1853204249 hasConceptScore W1853204249C80444323 @default.
- W1853204249 hasLocation W18532042491 @default.
- W1853204249 hasOpenAccess W1853204249 @default.
- W1853204249 hasPrimaryLocation W18532042491 @default.
- W1853204249 hasRelatedWork W1486687522 @default.
- W1853204249 hasRelatedWork W1556169204 @default.
- W1853204249 hasRelatedWork W2163988988 @default.
- W1853204249 hasRelatedWork W2164700406 @default.
- W1853204249 hasRelatedWork W2204252256 @default.
- W1853204249 hasRelatedWork W2479427798 @default.
- W1853204249 hasRelatedWork W2606461407 @default.
- W1853204249 hasRelatedWork W2766953637 @default.
- W1853204249 hasRelatedWork W2803235324 @default.