Matches in SemOpenAlex for { <https://semopenalex.org/work/W1853282950> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W1853282950 abstract "Over the last several decades there have been significant advances in the study and understanding of light behavior in nanoscale geometries. Entire fields such as those based on photonic crystals, plasmonics and metamaterials have been developed, accelerating the growth of knowledge related to nanoscale light manipulation. Coupled with recent interest in cheap, reliable renewable energy, a new field has blossomed, that of nanophotonic solar cells. In this thesis, we examine important properties of thin-film solar cells from a nanophotonics perspective. We identify key differences between nanophotonic devices and traditional, thick solar cells. We propose a new way of understanding and describing limits to light trapping and show that certain nanophotonic solar cell designs can have light trapping limits above the so called ray-optic or ergodic limit. We propose that a necessary requisite to exceed the traditional light trapping limit is that the active region of the solar cell must possess a local density of optical states (LDOS) higher than that of the corresponding, bulk material. Additionally, we show that in addition to having an increased density of states, the absorber must have an appropriate incoupling mechanism to transfer light from free space into the optical modes of the device. We outline a portfolio of new solar cell designs that have potential to exceed the traditional light trapping limit and numerically validate our predictions for select cases. We emphasize the importance of thinking about light trapping in terms of maximizing the optical modes of the device and efficiently coupling light into them from free space. To further explore these two concepts, we optimize patterns of superlattices of air holes in thin slabs of Si and show that by adding a roughened incoupling layer the total absorbed current can be increased synergistically. We suggest that the addition of a random scattering surface to a periodic patterning can increase incoupling by lifting the constraint of selective mode occupation associated with periodic systems. Lastly, through experiment and simulation, we investigate a potential high efficiency solar cell architecture that can be improved with the nanophotonic light trapping concepts described in this thesis. Optically thin GaAs solar cells are prepared by the epitaxial liftoff process by removal from their growth substrate and addition of a metallic back reflector. A process of depositing large area nano patterns on the surface of the cells is developed using nano imprint lithography and implemented on the thin GaAs cells." @default.
- W1853282950 created "2016-06-24" @default.
- W1853282950 creator A5040540825 @default.
- W1853282950 date "2015-01-01" @default.
- W1853282950 modified "2023-09-24" @default.
- W1853282950 title "Nanophotonic Light Trapping In Thin Solar Cells" @default.
- W1853282950 doi "https://doi.org/10.7907/z92n506z." @default.
- W1853282950 hasPublicationYear "2015" @default.
- W1853282950 type Work @default.
- W1853282950 sameAs 1853282950 @default.
- W1853282950 citedByCount "0" @default.
- W1853282950 crossrefType "dissertation" @default.
- W1853282950 hasAuthorship W1853282950A5040540825 @default.
- W1853282950 hasConcept C110879396 @default.
- W1853282950 hasConcept C120665830 @default.
- W1853282950 hasConcept C121332964 @default.
- W1853282950 hasConcept C171250308 @default.
- W1853282950 hasConcept C192562407 @default.
- W1853282950 hasConcept C20788544 @default.
- W1853282950 hasConcept C27289702 @default.
- W1853282950 hasConcept C2780824857 @default.
- W1853282950 hasConcept C47180545 @default.
- W1853282950 hasConcept C49040817 @default.
- W1853282950 hasConcept C66187686 @default.
- W1853282950 hasConceptScore W1853282950C110879396 @default.
- W1853282950 hasConceptScore W1853282950C120665830 @default.
- W1853282950 hasConceptScore W1853282950C121332964 @default.
- W1853282950 hasConceptScore W1853282950C171250308 @default.
- W1853282950 hasConceptScore W1853282950C192562407 @default.
- W1853282950 hasConceptScore W1853282950C20788544 @default.
- W1853282950 hasConceptScore W1853282950C27289702 @default.
- W1853282950 hasConceptScore W1853282950C2780824857 @default.
- W1853282950 hasConceptScore W1853282950C47180545 @default.
- W1853282950 hasConceptScore W1853282950C49040817 @default.
- W1853282950 hasConceptScore W1853282950C66187686 @default.
- W1853282950 hasLocation W18532829501 @default.
- W1853282950 hasOpenAccess W1853282950 @default.
- W1853282950 hasPrimaryLocation W18532829501 @default.
- W1853282950 hasRelatedWork W1976261170 @default.
- W1853282950 hasRelatedWork W1985062299 @default.
- W1853282950 hasRelatedWork W2017562930 @default.
- W1853282950 hasRelatedWork W2039731884 @default.
- W1853282950 hasRelatedWork W204458656 @default.
- W1853282950 hasRelatedWork W2221626693 @default.
- W1853282950 hasRelatedWork W2555473645 @default.
- W1853282950 hasRelatedWork W272083546 @default.
- W1853282950 hasRelatedWork W2751139748 @default.
- W1853282950 hasRelatedWork W2765384722 @default.
- W1853282950 hasRelatedWork W2954128252 @default.
- W1853282950 hasRelatedWork W2961131977 @default.
- W1853282950 hasRelatedWork W2980567365 @default.
- W1853282950 hasRelatedWork W3048775057 @default.
- W1853282950 hasRelatedWork W3090129051 @default.
- W1853282950 hasRelatedWork W3097033059 @default.
- W1853282950 hasRelatedWork W3103210026 @default.
- W1853282950 hasRelatedWork W3135497118 @default.
- W1853282950 hasRelatedWork W3160893522 @default.
- W1853282950 hasRelatedWork W648204970 @default.
- W1853282950 isParatext "false" @default.
- W1853282950 isRetracted "false" @default.
- W1853282950 magId "1853282950" @default.
- W1853282950 workType "dissertation" @default.