Matches in SemOpenAlex for { <https://semopenalex.org/work/W1853529910> ?p ?o ?g. }
- W1853529910 endingPage "18998" @default.
- W1853529910 startingPage "18991" @default.
- W1853529910 abstract "The S100 family of EF-hand calcium (Ca2+)-binding proteins is essential for a wide range of cellular functions. During infection, certain S100 proteins act as damage-associated molecular patterns (DAMPs) and interact with pattern recognition receptors to modulate inflammatory responses. In addition, these inflammatory S100 proteins have potent antimicrobial properties and are essential components of the immune response to invading pathogens. In this review, we focus on S100 proteins that exhibit antimicrobial properties through the process of metal limitation, termed nutritional immunity, and discuss several recent advances in our understanding of S100 protein-mediated metal sequestration at the site of infection. The S100 family of EF-hand calcium (Ca2+)-binding proteins is essential for a wide range of cellular functions. During infection, certain S100 proteins act as damage-associated molecular patterns (DAMPs) and interact with pattern recognition receptors to modulate inflammatory responses. In addition, these inflammatory S100 proteins have potent antimicrobial properties and are essential components of the immune response to invading pathogens. In this review, we focus on S100 proteins that exhibit antimicrobial properties through the process of metal limitation, termed nutritional immunity, and discuss several recent advances in our understanding of S100 protein-mediated metal sequestration at the site of infection. S100 proteins are EF-hand Ca2+-binding proteins involved in a diverse array of both intracellular and extracellular regulatory functions (1Donato R. Cannon B.R. Sorci G. Riuzzi F. Hsu K. Weber D.J. Geczy C.L. Functions of S100 proteins.Curr. Mol. Med. 2013; 13: 24-57Crossref PubMed Scopus (880) Google Scholar, 2Marenholz I. Heizmann C.W. Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature).Biochem. Biophys. Res. Commun. 2004; 322: 1111-1122Crossref PubMed Scopus (675) Google Scholar, 3van Lent P.L. Grevers L.C. Schelbergen R. Blom A. Geurts J. Sloetjes A. Vogl T. Roth J. van den Berg W.B. S100A8 causes a shift toward expression of activatory Fcγ receptors on macrophages via Toll-like receptor 4 and regulates Fcγ receptor expression in synovium during chronic experimental arthritis.Arthritis Rheum. 2010; 62: 3353-3364Crossref PubMed Scopus (36) Google Scholar, 4Donato R. Intracellular and extracellular roles of S100 proteins.Microsc. Res. Tech. 2003; 60: 540-551Crossref PubMed Scopus (814) Google Scholar, 5Ravasi T. Hsu K. Goyette J. Schroder K. Yang Z. Rahimi F. Miranda L.P. Alewood P.F. Hume D.A. Geczy C. Probing the S100 protein family through genomic and functional analysis.Genomics. 2004; 84: 10-22Crossref PubMed Scopus (126) Google Scholar, 6Heizmann C.W. Fritz G. Schäfer B.W. S100 proteins: structure, functions and pathology.Front. Biosci. 2002; 7: d1356-d1368Crossref PubMed Google Scholar). Over 20 S100 proteins have been identified, and all have a characteristic dimeric structure distinct from other EF-hand proteins (7Potts B.C. Smith J. Akke M. Macke T.J. Okazaki K. Hidaka H. Case D.A. Chazin W.J. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins.Nat. Struct. Biol. 1995; 2: 790-796Crossref PubMed Scopus (168) Google Scholar). Like many EF-hand proteins, Ca2+ signaling function is associated with a binding-induced conformational change exposing a hydrophobic patch that generates specificity for target proteins (8Bhattacharya S. Bunick C.G. Chazin W.J. Target selectivity in EF-hand calcium binding proteins.Biochim. Biophys. Acta. 2004; 1742: 69-79Crossref PubMed Scopus (215) Google Scholar, 9Santamaria-Kisiel L. Rintala-Dempsey A.C. Shaw G.S. Calcium-dependent and -independent interactions of the S100 protein family.Biochem. J. 2006; 396: 201-214Crossref PubMed Scopus (485) Google Scholar). Within the cell, S100 proteins regulate numerous important processes including Ca2+ homeostasis, energy metabolism, and cell proliferation and differentiation. Remarkably, certain S100 proteins can be secreted and/or released by cells, and among these, some play an important role during infection and inflammation (1Donato R. Cannon B.R. Sorci G. Riuzzi F. Hsu K. Weber D.J. Geczy C.L. Functions of S100 proteins.Curr. Mol. Med. 2013; 13: 24-57Crossref PubMed Scopus (880) Google Scholar). In particular, extracellular S100 proteins can act as damage-associated molecular pattern (DAMP) 3The abbreviations used are: DAMPdamage-associated molecular patternRAGEreceptor for advanced glycation end productsTLRToll-like receptorROSreactive oxygen species. proteins and initiate a pro-inflammatory immune response through interaction with pattern recognition receptors and the receptor for advanced glycation end products (RAGE) (10Foell D. Wittkowski H. Vogl T. Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules.J. Leukoc. Biol. 2007; 81: 28-37Crossref PubMed Scopus (664) Google Scholar, 11Leclerc E. Fritz G. Vetter S.W. Heizmann C.W. Binding of S100 proteins to RAGE: an update.Biochim. Biophys. Acta. 2009; 1793: 993-1007Crossref PubMed Scopus (374) Google Scholar). Furthermore, through the process of nutrient metal limitation, several S100 proteins have been shown to be antimicrobial and play a key role in host defense at the host-pathogen interface (12Damo S.M. Kehl-Fie T.E. Sugitani N. Holt M.E. Rathi S. Murphy W.J. Zhang Y. Betz C. Hench L. Fritz G. Skaar E.P. Chazin W.J. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 3841-3846Crossref PubMed Scopus (265) Google Scholar, 13Gaddy J.A. Radin J.N. Loh J.T. Piazuelo M.B. Kehl-Fie T.E. Delgado A.G. Ilca F.T. Peek R.M. Cover T.L. Chazin W.J. Skaar E.P. Scott Algood H.M. The host protein calprotectin modulates the Helicobacter pylori cag type IV secretion system via zinc sequestration.PLoS Pathog. 2014; 10e1004450 Crossref PubMed Scopus (67) Google Scholar, 14Hood M.I. Mortensen B.L. Moore J.L. Zhang Y. Kehl-Fie T.E. Sugitani N. Chazin W.J. Caprioli R.M. Skaar E.P. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration.PLoS Pathog. 2012; 8e1003068 Crossref PubMed Scopus (194) Google Scholar, 15Kehl-Fie T.E. Chitayat S. Hood M.I. Damo S. Restrepo N. Garcia C. Munro K.A. Chazin W.J. Skaar E.P. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus.Cell Host Microbe. 2011; 10: 158-164Abstract Full Text Full Text PDF PubMed Scopus (290) Google Scholar, 16Kehl-Fie T.E. Zhang Y. Moore J.L. Farrand A.J. Hood M.I. Rathi S. Chazin W.J. Caprioli R.M. Skaar E.P. MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese.Infect. Immun. 2013; 81: 3395-3405Crossref PubMed Scopus (144) Google Scholar, 17Liu J.Z. Jellbauer S. Poe A.J. Ton V. Pesciaroli M. Kehl-Fie T.E. Restrepo N.A. Hosking M.P. Edwards R.A. Battistoni A. Pasquali P. Lane T.E. Chazin W.J. Vogl T. Roth J. Skaar E.P. Raffatellu M. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut.Cell Host Microbe. 2012; 11: 227-239Abstract Full Text Full Text PDF PubMed Scopus (250) Google Scholar). In this review, we provide insight into structure and function of the three S100 proteins with antimicrobial and inflammatory properties: S100A7 (psoriasin); S100A8/S100A9 (calprotectin; calgranulin A and B; MRP-8 and 9); and S100A12 (calgranulin C). damage-associated molecular pattern receptor for advanced glycation end products Toll-like receptor reactive oxygen species. The basic unit of EF-hand proteins is a helix-Ca2+ binding loop-helix motif; these motifs are typically packed in pairs to form a stable globular four-helix bundle domain (8Bhattacharya S. Bunick C.G. Chazin W.J. Target selectivity in EF-hand calcium binding proteins.Biochim. Biophys. Acta. 2004; 1742: 69-79Crossref PubMed Scopus (215) Google Scholar). Each S100 protein contains a distinctive S100-specific N-terminal EF-hand motif and a C-terminal canonical EF-hand motif (Fig. 1). The fundamental structural unit of S100 proteins is a highly integrated antiparallel dimer (7Potts B.C. Smith J. Akke M. Macke T.J. Okazaki K. Hidaka H. Case D.A. Chazin W.J. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins.Nat. Struct. Biol. 1995; 2: 790-796Crossref PubMed Scopus (168) Google Scholar); all S100 proteins form this structure as homodimers, and some will also heterodimerize. S100A8 and S100A9 are unique among all members of the family because they preferentially form a heterodimer (18Hunter M.J. Chazin W.J. High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14.J. Biol. Chem. 1998; 273: 12427-12435Abstract Full Text Full Text PDF PubMed Scopus (180) Google Scholar), which is termed calprotectin based on its role in innate immunity. S100 proteins are also known to form higher order oligomers, usually mediated by high levels of Ca2+ or Zn2+. Like other EF proteins that function in signaling, the binding of Ca2+ causes a conformational change, in this case within each S100 protein subunit (Fig. 1A) (8Bhattacharya S. Bunick C.G. Chazin W.J. Target selectivity in EF-hand calcium binding proteins.Biochim. Biophys. Acta. 2004; 1742: 69-79Crossref PubMed Scopus (215) Google Scholar, 9Santamaria-Kisiel L. Rintala-Dempsey A.C. Shaw G.S. Calcium-dependent and -independent interactions of the S100 protein family.Biochem. J. 2006; 396: 201-214Crossref PubMed Scopus (485) Google Scholar, 19Pröpper C. Huang X. Roth J. Sorg C. Nacken W. Analysis of the MRP8-MRP14 protein-protein interaction by the two-hybrid system suggests a prominent role of the C-terminal domain of S100 proteins in dimer formation.J. Biol. Chem. 1999; 274: 183-188Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar). Ca2+ plays an important role in the functional duality of calprotectin. Inside cells, where the basal level of Ca2+ is in the nanomolar range, calprotectin can serve as a sensor of Ca2+ signals, which are associated with ∼100-fold increase in Ca2+ concentration into the micromolar range. This in turn results in the binding of ions, conformational change, and interaction with intracellular target proteins. Ca2+ is also known to stimulate formation of higher order oligomers of S100 proteins, including S100A8/S100A9 tetramers that have been suggested to play a role in some of calprotectin's activities (15Kehl-Fie T.E. Chitayat S. Hood M.I. Damo S. Restrepo N. Garcia C. Munro K.A. Chazin W.J. Skaar E.P. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus.Cell Host Microbe. 2011; 10: 158-164Abstract Full Text Full Text PDF PubMed Scopus (290) Google Scholar, 20Korndörfer I.P. Brueckner F. Skerra A. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins.J. Mol. Biol. 2007; 370: 887-898Crossref PubMed Scopus (209) Google Scholar, 21Brophy M.B. Hayden J.A. Nolan E.M. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin.J. Am. Chem. Soc. 2012; 134: 18089-18100Crossref PubMed Scopus (121) Google Scholar22Hayden J.A. Brophy M.B. Cunden L.S. Nolan E.M. High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface.J. Am. Chem. Soc. 2013; 135: 775-787Crossref PubMed Scopus (102) Google Scholar). In the extracellular milieu, S100 proteins do not function as Ca2+ sensors because Ca2+ concentration is in the mm range and the proteins are perpetually Ca2+-bound. Secretion of S100 proteins therefore causes a change in the functional properties. Thus, it has been proposed that Ca2+ may act as the molecular switch between the intracellular and extracellular functions of calprotectin (21Brophy M.B. Hayden J.A. Nolan E.M. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin.J. Am. Chem. Soc. 2012; 134: 18089-18100Crossref PubMed Scopus (121) Google Scholar). Because extracellular calcium is constant, the molecular switch can also be viewed as the secretion of the protein. Regardless, extracellular function of calprotectin is governed by being Ca2+-bound. Importantly, Ca2+ has been shown to stimulate the binding of transition metals in calprotectin, which as discussed below is essential for its role in host defense against pathogens (2Marenholz I. Heizmann C.W. Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature).Biochem. Biophys. Res. Commun. 2004; 322: 1111-1122Crossref PubMed Scopus (675) Google Scholar). S100 proteins are distinguished from other EF-hand proteins by the presence of two transition metal binding sites at the dimer interface. In calprotectin, the first transition metal binding site (Site I) is capable of binding both zinc (Zn2+) and manganese (Mn2+) with high affinity (Kd (Zn2+) ∼10−9 m, Kd (Mn2+) ∼10−7-10−8 m), whereas the second binding site (Site II) binds only Zn2+ with high affinity (Kd (Zn2+) ∼10−9 m) (12Damo S.M. Kehl-Fie T.E. Sugitani N. Holt M.E. Rathi S. Murphy W.J. Zhang Y. Betz C. Hench L. Fritz G. Skaar E.P. Chazin W.J. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 3841-3846Crossref PubMed Scopus (265) Google Scholar, 20Korndörfer I.P. Brueckner F. Skerra A. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins.J. Mol. Biol. 2007; 370: 887-898Crossref PubMed Scopus (209) Google Scholar, 21Brophy M.B. Hayden J.A. Nolan E.M. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin.J. Am. Chem. Soc. 2012; 134: 18089-18100Crossref PubMed Scopus (121) Google Scholar22Hayden J.A. Brophy M.B. Cunden L.S. Nolan E.M. High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface.J. Am. Chem. Soc. 2013; 135: 775-787Crossref PubMed Scopus (102) Google Scholar). An x-ray crystal structure, as well as spectroscopic and mutagenesis studies, revealed that the Zn2+ binding in Site I involves His-17 and His-27 from S100A8 and His-91 and His-95 from S100A9, whereas chelation of Mn2+ involves the same four residues along with two additional histidine residues from the C-terminal tail of the S100A9 subunit (Fig. 1A), which enable binding in the requisite octahedral geometry (12Damo S.M. Kehl-Fie T.E. Sugitani N. Holt M.E. Rathi S. Murphy W.J. Zhang Y. Betz C. Hench L. Fritz G. Skaar E.P. Chazin W.J. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 3841-3846Crossref PubMed Scopus (265) Google Scholar, 21Brophy M.B. Hayden J.A. Nolan E.M. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin.J. Am. Chem. Soc. 2012; 134: 18089-18100Crossref PubMed Scopus (121) Google Scholar, 22Hayden J.A. Brophy M.B. Cunden L.S. Nolan E.M. High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface.J. Am. Chem. Soc. 2013; 135: 775-787Crossref PubMed Scopus (102) Google Scholar). Remarkably, a His6 Mn2+ binding site is unique to calprotectin and is not seen in any other Mn2+-binding protein. Site II chelates Zn2+ with His-83 and His-87 from S100A8 and His-20 and Asp-30 from S100A9 (Fig. 1A) (12Damo S.M. Kehl-Fie T.E. Sugitani N. Holt M.E. Rathi S. Murphy W.J. Zhang Y. Betz C. Hench L. Fritz G. Skaar E.P. Chazin W.J. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 3841-3846Crossref PubMed Scopus (265) Google Scholar, 20Korndörfer I.P. Brueckner F. Skerra A. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins.J. Mol. Biol. 2007; 370: 887-898Crossref PubMed Scopus (209) Google Scholar, 21Brophy M.B. Hayden J.A. Nolan E.M. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin.J. Am. Chem. Soc. 2012; 134: 18089-18100Crossref PubMed Scopus (121) Google Scholar), but lacks appropriately positioned additional ligands to enable high affinity binding of Mn2+. In contrast to calprotectin, S100A7 and S100A12 function as homodimers (6Heizmann C.W. Fritz G. Schäfer B.W. S100 proteins: structure, functions and pathology.Front. Biosci. 2002; 7: d1356-d1368Crossref PubMed Google Scholar, 23Brodersen D.E. Nyborg J. Kjeldgaard M. Zinc-binding site of an S100 protein revealed: two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states.Biochemistry. 1999; 38: 1695-1704Crossref PubMed Scopus (114) Google Scholar, 24Moroz O.V. Blagova E.V. Wilkinson A.J. Wilson K.S. Bronstein I.B. The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation.J. Mol. Biol. 2009; 391: 536-551Crossref PubMed Scopus (82) Google Scholar25Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles.Int. J. Biochem. Cell Biol. 2001; 33: 637-668Crossref PubMed Scopus (1328) Google Scholar). S100A7 binds two Zn2+ ions at symmetrically disposed sites across the dimer interface using residues His-86 and His-90 from one subunit and residues His-17 and Asp-24 from the other (Fig. 1B) (23Brodersen D.E. Nyborg J. Kjeldgaard M. Zinc-binding site of an S100 protein revealed: two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states.Biochemistry. 1999; 38: 1695-1704Crossref PubMed Scopus (114) Google Scholar). Binding of Zn2+ is believed to stabilize the dimer and potentially mediate S100A7 function during infection (23Brodersen D.E. Nyborg J. Kjeldgaard M. Zinc-binding site of an S100 protein revealed: two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states.Biochemistry. 1999; 38: 1695-1704Crossref PubMed Scopus (114) Google Scholar). S100A12 homodimerization leads to the formation of two symmetrically disposed transition metal binding sites capable of binding Zn2+ and Cu2+ (24Moroz O.V. Blagova E.V. Wilkinson A.J. Wilson K.S. Bronstein I.B. The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation.J. Mol. Biol. 2009; 391: 536-551Crossref PubMed Scopus (82) Google Scholar). The ions are ligated by His-15 and Asp-25 from one subunit and His-85 and His-89 from the other subunit of the (Fig. 1C) (24Moroz O.V. Blagova E.V. Wilkinson A.J. Wilson K.S. Bronstein I.B. The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation.J. Mol. Biol. 2009; 391: 536-551Crossref PubMed Scopus (82) Google Scholar). Interestingly, metal binding at these sites leads to substantial changes in the functional properties of S100A12. At the biochemical level, Zn2+ binding stimulates a 1500-fold increase in Ca2+ binding affinity (24Moroz O.V. Blagova E.V. Wilkinson A.J. Wilson K.S. Bronstein I.B. The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation.J. Mol. Biol. 2009; 391: 536-551Crossref PubMed Scopus (82) Google Scholar). Furthermore, Zn2+ and Cu2+ binding promote formation of an S100A12 tetramer (24Moroz O.V. Blagova E.V. Wilkinson A.J. Wilson K.S. Bronstein I.B. The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation.J. Mol. Biol. 2009; 391: 536-551Crossref PubMed Scopus (82) Google Scholar). As discussed below, this tetrameric form of S100A12 likely mediates important inflammatory functions during infection. To maximize the protective function of antimicrobial S100 proteins while simultaneously maintaining immune system homeostasis, expression of S100 proteins is tightly regulated (1Donato R. Cannon B.R. Sorci G. Riuzzi F. Hsu K. Weber D.J. Geczy C.L. Functions of S100 proteins.Curr. Mol. Med. 2013; 13: 24-57Crossref PubMed Scopus (880) Google Scholar, 4Donato R. Intracellular and extracellular roles of S100 proteins.Microsc. Res. Tech. 2003; 60: 540-551Crossref PubMed Scopus (814) Google Scholar). Calprotectin and S100A12 are primarily expressed in cells of myeloid origin, such as neutrophils, monocytes, and early macrophages (5Ravasi T. Hsu K. Goyette J. Schroder K. Yang Z. Rahimi F. Miranda L.P. Alewood P.F. Hume D.A. Geczy C. Probing the S100 protein family through genomic and functional analysis.Genomics. 2004; 84: 10-22Crossref PubMed Scopus (126) Google Scholar, 26Lagasse E. Clerc R.G. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation.Mol. Cell. Biol. 1988; 8: 2402-2410Crossref PubMed Scopus (196) Google Scholar, 27Hsu K. Champaiboon C. Guenther B.D. Sorenson B.S. Khammanivong A. Ross K.F. Geczy C.L. Herzberg M.C. Anti-infective protective properties of S100 calgranulins.Antiinflamm. Antiallergy Agents Med. Chem. 2009; 8: 290-305Crossref PubMed Scopus (136) Google Scholar). In neutrophils, calprotectin accounts for over 40% of the cytoplasmic fraction, highlighting its importance in the neutrophilic immune response (28Clohessy P.A. Golden B.E. Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence.Scand. J. Immunol. 1995; 42: 551-556Crossref PubMed Scopus (167) Google Scholar, 29Hessian P.A. Edgeworth J. Hogg N. MRP-8 and MRP-14, two abundant Ca2+-binding proteins of neutrophils and monocytes.J. Leukoc. Biol. 1993; 53: 197-204Crossref PubMed Scopus (350) Google Scholar). Expression of calprotectin and S100A12 can be induced in keratinocytes, endothelial cells, and epithelial cells during inflammation (27Hsu K. Champaiboon C. Guenther B.D. Sorenson B.S. Khammanivong A. Ross K.F. Geczy C.L. Herzberg M.C. Anti-infective protective properties of S100 calgranulins.Antiinflamm. Antiallergy Agents Med. Chem. 2009; 8: 290-305Crossref PubMed Scopus (136) Google Scholar, 30Stoll S.W. Zhao X. Elder J.T. EGF stimulates transcription of CaN19 (S100A2) in HaCaT keratinocytes.J. Invest. Dermatol. 1998; 111: 1092-1097Abstract Full Text Full Text PDF PubMed Scopus (30) Google Scholar, 31Nukui T. Ehama R. Sakaguchi M. Sonegawa H. Katagiri C. Hibino T. Huh N.H. S100A8/A9, a key mediator for positive feedback growth stimulation of normal human keratinocytes.J. Cell. Biochem. 2008; 104: 453-464Crossref PubMed Scopus (98) Google Scholar, 32Goebeler M. Roth J. van den Bos C. Ader G. Sorg C. Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments.Biochem. J. 1995; 309: 419-424Crossref PubMed Scopus (78) Google Scholar, 33Grimbaldeston M.A. Geczy C.L. Tedla N. Finlay-Jones J.J. Hart P.H. S100A8 induction in keratinocytes by ultraviolet A irradiation is dependent on reactive oxygen intermediates.J. Invest. Dermatol. 2003; 121: 1168-1174Abstract Full Text Full Text PDF PubMed Scopus (68) Google Scholar, 34Mørk G. Schjerven H. Mangschau L. Søyland E. Brandtzaeg P. Proinflammatory cytokines upregulate expression of calprotectin (L1 protein, MRP-8/MRP-14) in cultured human keratinocytes.Br. J. Dermatol. 2003; 149: 484-491Crossref PubMed Scopus (48) Google Scholar). Furthermore, various in vitro studies have shown that induction of macrophages with pro-inflammatory cytokines can lead to the expression and release of calprotectin and S100A12 (35Frosch M. Strey A. Vogl T. Wulffraat N.M. Kuis W. Sunderkötter C. Harms E. Sorg C. Roth J. Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis.Arthritis Rheum. 2000; 43: 628-637Crossref PubMed Scopus (323) Google Scholar, 36Yang Z. Tao T. Raftery M.J. Youssef P. Di Girolamo N. Geczy C.L. Proinflammatory properties of the human S100 protein S100A12.J. Leukoc. Biol. 2001; 69: 986-994Crossref PubMed Google Scholar37Yang Z. Yan W.X. Cai H. Tedla N. Armishaw C. Di Girolamo N. Wang H.W. Hampartzoumian T. Simpson J.L. Gibson P.G. Hunt J. Hart P. Hughes J.M. Perry M.A. Alewood P.F. Geczy C.L. S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity.J. Allergy Clin. Immunol. 2007; 119: 106-114Abstract Full Text Full Text PDF PubMed Scopus (129) Google Scholar). Secretion of S100 proteins including calprotectin and S100A12 is facilitated by: (a) active release through intact microtubule networks in a Golgi-independent pathway (38Rammes A. Roth J. Goebeler M. Klempt M. Hartmann M. Sorg C. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway.J. Biol. Chem. 1997; 272: 9496-9502Abstract Full Text Full Text PDF PubMed Scopus (476) Google Scholar); (b) release during the formation of neutrophil extracellular traps (39Urban C.F. Ermert D. Schmid M. Abu-Abed U. Goosmann C. Nacken W. Brinkmann V. Jungblut P.R. Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans.PLoS Pathog. 2009; 5e1000639 Crossref PubMed Scopus (1112) Google Scholar); or (c) release through passive release during cell necrosis (40Voganatsi A. Panyutich A. Miyasaki K.T. Murthy R.K. Mechanism of extracellular release of human neutrophil calprotectin complex.J. Leukoc. Biol. 2001; 70: 130-134PubMed Google Scholar). At some sites of infection and inflammation, calprotectin concentrations exceed 1 mg/ml, suggesting massive expression and/or mobilization of this protein during infection (41Gebhardt C. Németh J. Angel P. Hess J. S100A8 and S100A9 in inflammation and cancer.Biochem. Pharmacol. 2006; 72: 1622-1631Crossref PubMed Scopus (530) Google Scholar). S100A7 is constitutively expressed in skin at relatively high levels, and expression is amplified in keratinocytes upon induction by pro-inflammatory cytokines IL-17 and IL-22 and bacterial products, such as flagellin (42Gläser R. Harder J. Lange H. Bartels J. Christophers E. Schröder J.M. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection.Nat. Immunol. 2005; 6: 57-64Crossref PubMed Scopus (531) Google Scholar). The differential expression profiles of S100 proteins allow for an immediate antimicrobial response upon infection in certain tissues, while limiting potentially detrimental inflammatory responses associated with each of these proteins. The capacity for S100 proteins to mediate inflammation and the potential link to chronic inflammatory disease will be discussed below. In the extracellular matrix, S100 proteins can act as potent modulators of inflammation. Once released by cells, these proteins are classified as DAMPs because of their important role in regulating inflammatory responses (10Foell D. Wittkowski H. Vogl T. Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules.J. Leukoc. Biol. 2007; 81: 28-37Crossref PubMed Scopus (664) Google Scholar). Extracellular S100 proteins can exhibit chemokine- and cytokine-like activity, initiate pro- and anti-inflammatory responses, and interact with pattern recognition receptors. Growing evidence suggests that S100-mediated inflammation is driven by endogenous interaction with pattern recognition receptors including RAGE and Toll-like receptors (10Foell D. Wittkowski H. Vogl T. Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules.J. Leukoc. Biol. 2007; 81: 28-37Crossref PubMed Scopus (664) Google Scholar, 11Leclerc E. Fritz G. Vetter S.W. Heizmann C.W. Binding of S100 proteins to RAGE: an update.Biochim. Biophys. Acta. 2009; 1793: 993-1007Crossref PubMed Scopus (374) Google Scholar). It has been demonstrated that calprotectin is an endogenous agonist of TLR4 (43Vogl T. Tenbrock K. Ludwig S. Leukert N. Ehrhardt C. van Zoelen M.A. Nacken W. Foell D. van der Poll T. Sorg C. Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock.Nat. Med. 2007; 13: 1042-1049Crossref PubMed Scopus (1027) Google Scholar). Binding to TLR4 and several other components of the lipopolysaccharide complex initiates a signaling cascade that promotes inflammation, autoimmunity, and tumor development in an NF-κB-dependent manner (43Vogl T. Tenbrock K. Ludwig S. Leukert N. Ehrhardt C. van Zoelen M.A. Nacken W. Foell D. van der Poll T. Sorg C. Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock.Nat. Med." @default.
- W1853529910 created "2016-06-24" @default.
- W1853529910 creator A5003392314 @default.
- W1853529910 creator A5051920013 @default.
- W1853529910 creator A5082616273 @default.
- W1853529910 date "2015-07-01" @default.
- W1853529910 modified "2023-10-16" @default.
- W1853529910 title "Nutritional Immunity: S100 Proteins at the Host-Pathogen Interface" @default.
- W1853529910 cites W114941839 @default.
- W1853529910 cites W1618224074 @default.
- W1853529910 cites W1774714795 @default.
- W1853529910 cites W1837137564 @default.
- W1853529910 cites W1878762030 @default.
- W1853529910 cites W1908218306 @default.
- W1853529910 cites W1950981769 @default.
- W1853529910 cites W1964234893 @default.
- W1853529910 cites W1964818207 @default.
- W1853529910 cites W1966971616 @default.
- W1853529910 cites W1967060390 @default.
- W1853529910 cites W1973437332 @default.
- W1853529910 cites W1974666992 @default.
- W1853529910 cites W1978381847 @default.
- W1853529910 cites W1979962636 @default.
- W1853529910 cites W1986755404 @default.
- W1853529910 cites W1987287925 @default.
- W1853529910 cites W1987816685 @default.
- W1853529910 cites W1990852282 @default.
- W1853529910 cites W1992196644 @default.
- W1853529910 cites W1994699793 @default.
- W1853529910 cites W1995166771 @default.
- W1853529910 cites W1998813486 @default.
- W1853529910 cites W1998826717 @default.
- W1853529910 cites W2003345560 @default.
- W1853529910 cites W2010151747 @default.
- W1853529910 cites W2011005794 @default.
- W1853529910 cites W2012526179 @default.
- W1853529910 cites W2016802844 @default.
- W1853529910 cites W2019132845 @default.
- W1853529910 cites W2033220681 @default.
- W1853529910 cites W2037564173 @default.
- W1853529910 cites W2039176236 @default.
- W1853529910 cites W2044992731 @default.
- W1853529910 cites W2047891751 @default.
- W1853529910 cites W2048131709 @default.
- W1853529910 cites W2055648088 @default.
- W1853529910 cites W2061431207 @default.
- W1853529910 cites W2064200041 @default.
- W1853529910 cites W2065140692 @default.
- W1853529910 cites W2066339876 @default.
- W1853529910 cites W2071191465 @default.
- W1853529910 cites W2071675524 @default.
- W1853529910 cites W2076961991 @default.
- W1853529910 cites W2081443120 @default.
- W1853529910 cites W2090168760 @default.
- W1853529910 cites W2091863490 @default.
- W1853529910 cites W2092772499 @default.
- W1853529910 cites W2095259974 @default.
- W1853529910 cites W2095898564 @default.
- W1853529910 cites W2097599737 @default.
- W1853529910 cites W2099599731 @default.
- W1853529910 cites W2099666638 @default.
- W1853529910 cites W2101254765 @default.
- W1853529910 cites W2103238040 @default.
- W1853529910 cites W2110249446 @default.
- W1853529910 cites W2111463022 @default.
- W1853529910 cites W2116794323 @default.
- W1853529910 cites W2120245009 @default.
- W1853529910 cites W2123404680 @default.
- W1853529910 cites W2130850468 @default.
- W1853529910 cites W2133610914 @default.
- W1853529910 cites W2141268830 @default.
- W1853529910 cites W2142115805 @default.
- W1853529910 cites W2144578507 @default.
- W1853529910 cites W2148833203 @default.
- W1853529910 cites W2148894885 @default.
- W1853529910 cites W2151566194 @default.
- W1853529910 cites W2152676422 @default.
- W1853529910 cites W2155756882 @default.
- W1853529910 cites W2156658768 @default.
- W1853529910 cites W2157045527 @default.
- W1853529910 cites W2161888715 @default.
- W1853529910 cites W2166229584 @default.
- W1853529910 cites W2168025112 @default.
- W1853529910 cites W2168350393 @default.
- W1853529910 cites W2169535061 @default.
- W1853529910 doi "https://doi.org/10.1074/jbc.r115.645085" @default.
- W1853529910 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4521021" @default.
- W1853529910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26055713" @default.
- W1853529910 hasPublicationYear "2015" @default.
- W1853529910 type Work @default.
- W1853529910 sameAs 1853529910 @default.
- W1853529910 citedByCount "175" @default.
- W1853529910 countsByYear W18535299102015 @default.
- W1853529910 countsByYear W18535299102016 @default.
- W1853529910 countsByYear W18535299102017 @default.
- W1853529910 countsByYear W18535299102018 @default.
- W1853529910 countsByYear W18535299102019 @default.
- W1853529910 countsByYear W18535299102020 @default.