Matches in SemOpenAlex for { <https://semopenalex.org/work/W1854540643> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W1854540643 endingPage "688" @default.
- W1854540643 startingPage "679" @default.
- W1854540643 abstract "Ganea conjectured that for any finite CW complex <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and any <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k greater-than 0> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>k>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c a t left-parenthesis upper X times upper S Superscript k Baseline right-parenthesis equals c a t left-parenthesis upper X right-parenthesis plus 1> <mml:semantics> <mml:mrow> <mml:mi>cat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>k</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>cat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {cat}(Xtimes S^k) =operatorname {cat}(X) + 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper we prove two special cases of this conjecture. The main result is the following. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis p minus 1 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(p-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-connected <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional CW complex (not necessarily finite). We show that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c a t left-parenthesis upper X right-parenthesis equals left floor StartFraction n Over p EndFraction right floor plus 1> <mml:semantics> <mml:mrow> <mml:mi>cat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>⌊</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mfrac> <mml:mi>n</mml:mi> <mml:mi>p</mml:mi> </mml:mfrac> </mml:mrow> <mml:mo>⌋</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {cat}(X) = left lfloor {n over p} right rfloor + 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n not-identical-to minus 1 mod p> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≢</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mi>mod</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>nnot equiv -1 operatorname {mod} p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (which implies <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than 1> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c a t left-parenthesis upper X times upper S Superscript k Baseline right-parenthesis equals c a t left-parenthesis upper X right-parenthesis plus 1> <mml:semantics> <mml:mrow> <mml:mi>cat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>k</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>cat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {cat}(Xtimes S^k) =operatorname {cat}(X) +1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This is proved by showing that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=w c a t left-parenthesis upper X times upper S Superscript k Baseline right-parenthesis equals w c a t left-parenthesis upper X right-parenthesis plus 1> <mml:semantics> <mml:mrow> <mml:mi>wcat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mi>k</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>wcat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {wcat}(Xtimes S^k) =operatorname {wcat}(X) + 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a much larger range, and then showing that under the conditions imposed, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c a t left-parenthesis upper X right-parenthesis equals w c a t left-parenthesis upper X right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>cat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>wcat</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {cat}(X)=operatorname {wcat}(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The second special case is an extension of Singhof’s earlier result for manifolds." @default.
- W1854540643 created "2016-06-24" @default.
- W1854540643 creator A5006328723 @default.
- W1854540643 date "1999-09-17" @default.
- W1854540643 modified "2023-09-23" @default.
- W1854540643 title "Two special cases of Ganea’s conjecture" @default.
- W1854540643 cites W1481512291 @default.
- W1854540643 cites W1485740749 @default.
- W1854540643 cites W1998222930 @default.
- W1854540643 cites W2017812955 @default.
- W1854540643 cites W2053841210 @default.
- W1854540643 cites W2054100851 @default.
- W1854540643 cites W2061504841 @default.
- W1854540643 cites W2061703721 @default.
- W1854540643 cites W2124724623 @default.
- W1854540643 cites W4206666514 @default.
- W1854540643 doi "https://doi.org/10.1090/s0002-9947-99-02046-2" @default.
- W1854540643 hasPublicationYear "1999" @default.
- W1854540643 type Work @default.
- W1854540643 sameAs 1854540643 @default.
- W1854540643 citedByCount "16" @default.
- W1854540643 countsByYear W18545406432012 @default.
- W1854540643 countsByYear W18545406432014 @default.
- W1854540643 countsByYear W18545406432017 @default.
- W1854540643 countsByYear W18545406432018 @default.
- W1854540643 countsByYear W18545406432019 @default.
- W1854540643 countsByYear W18545406432022 @default.
- W1854540643 crossrefType "journal-article" @default.
- W1854540643 hasAuthorship W1854540643A5006328723 @default.
- W1854540643 hasBestOaLocation W18545406431 @default.
- W1854540643 hasConcept C11413529 @default.
- W1854540643 hasConcept C154945302 @default.
- W1854540643 hasConcept C41008148 @default.
- W1854540643 hasConceptScore W1854540643C11413529 @default.
- W1854540643 hasConceptScore W1854540643C154945302 @default.
- W1854540643 hasConceptScore W1854540643C41008148 @default.
- W1854540643 hasIssue "2" @default.
- W1854540643 hasLocation W18545406431 @default.
- W1854540643 hasOpenAccess W1854540643 @default.
- W1854540643 hasPrimaryLocation W18545406431 @default.
- W1854540643 hasRelatedWork W2051487156 @default.
- W1854540643 hasRelatedWork W2073681303 @default.
- W1854540643 hasRelatedWork W2317200988 @default.
- W1854540643 hasRelatedWork W2358668433 @default.
- W1854540643 hasRelatedWork W2376932109 @default.
- W1854540643 hasRelatedWork W2382290278 @default.
- W1854540643 hasRelatedWork W2386767533 @default.
- W1854540643 hasRelatedWork W2390279801 @default.
- W1854540643 hasRelatedWork W2748952813 @default.
- W1854540643 hasRelatedWork W2899084033 @default.
- W1854540643 hasVolume "352" @default.
- W1854540643 isParatext "false" @default.
- W1854540643 isRetracted "false" @default.
- W1854540643 magId "1854540643" @default.
- W1854540643 workType "article" @default.