Matches in SemOpenAlex for { <https://semopenalex.org/work/W1855265535> ?p ?o ?g. }
- W1855265535 endingPage "93" @default.
- W1855265535 startingPage "76" @default.
- W1855265535 abstract "The classical assumption in sampling and spline theories is that the input signal is square-integrable, which prevents us from applying such techniques to signals that do not decay or even grow at infinity. In this paper, we develop a sampling theory for multidimensional non-decaying signals living in weighted Lp spaces. The sampling and reconstruction of an analog signal can be done by a projection onto a shift-invariant subspace generated by an interpolating kernel. We show that, if this kernel and its biorthogonal counterpart are elements of appropriate hybrid-norm spaces, then both the sampling and the reconstruction are stable. This is an extension of earlier results by Aldroubi and Gröchenig. The extension is required because it allows us to develop the theory for the ideal sampling of non-decaying signals in weighted Sobolev spaces. When the d-dimensional signal and its d/p+ε derivatives, for arbitrarily small ε>0, grow no faster than a polynomial in the Lp sense, the sampling operator is shown to be bounded even without a sampling kernel. As a consequence, the signal can also be interpolated from its samples with a nicely behaved interpolating kernel." @default.
- W1855265535 created "2016-06-24" @default.
- W1855265535 creator A5027830035 @default.
- W1855265535 creator A5060770511 @default.
- W1855265535 date "2017-07-01" @default.
- W1855265535 modified "2023-10-12" @default.
- W1855265535 title "A sampling theory for non-decaying signals" @default.
- W1855265535 cites W1479895638 @default.
- W1855265535 cites W1975302208 @default.
- W1855265535 cites W1976793609 @default.
- W1855265535 cites W1991233659 @default.
- W1855265535 cites W1998201449 @default.
- W1855265535 cites W2003410902 @default.
- W1855265535 cites W2004421506 @default.
- W1855265535 cites W2013789957 @default.
- W1855265535 cites W2027349577 @default.
- W1855265535 cites W2032039361 @default.
- W1855265535 cites W2040855018 @default.
- W1855265535 cites W2044305453 @default.
- W1855265535 cites W2048042895 @default.
- W1855265535 cites W2050921210 @default.
- W1855265535 cites W2053159614 @default.
- W1855265535 cites W2073431334 @default.
- W1855265535 cites W2079175926 @default.
- W1855265535 cites W2084052726 @default.
- W1855265535 cites W2084633773 @default.
- W1855265535 cites W2092124575 @default.
- W1855265535 cites W2094116886 @default.
- W1855265535 cites W2095248543 @default.
- W1855265535 cites W2095992772 @default.
- W1855265535 cites W2100836068 @default.
- W1855265535 cites W2126315543 @default.
- W1855265535 cites W2135627310 @default.
- W1855265535 cites W2140749977 @default.
- W1855265535 cites W2166500461 @default.
- W1855265535 cites W2328165641 @default.
- W1855265535 cites W4248262852 @default.
- W1855265535 cites W4252713891 @default.
- W1855265535 doi "https://doi.org/10.1016/j.acha.2015.10.006" @default.
- W1855265535 hasPublicationYear "2017" @default.
- W1855265535 type Work @default.
- W1855265535 sameAs 1855265535 @default.
- W1855265535 citedByCount "20" @default.
- W1855265535 countsByYear W18552655352015 @default.
- W1855265535 countsByYear W18552655352016 @default.
- W1855265535 countsByYear W18552655352017 @default.
- W1855265535 countsByYear W18552655352018 @default.
- W1855265535 countsByYear W18552655352019 @default.
- W1855265535 countsByYear W18552655352020 @default.
- W1855265535 countsByYear W18552655352021 @default.
- W1855265535 countsByYear W18552655352022 @default.
- W1855265535 countsByYear W18552655352023 @default.
- W1855265535 crossrefType "journal-article" @default.
- W1855265535 hasAuthorship W1855265535A5027830035 @default.
- W1855265535 hasAuthorship W1855265535A5060770511 @default.
- W1855265535 hasBestOaLocation W18552655351 @default.
- W1855265535 hasConcept C102519508 @default.
- W1855265535 hasConcept C10390562 @default.
- W1855265535 hasConcept C104267543 @default.
- W1855265535 hasConcept C105795698 @default.
- W1855265535 hasConcept C106131492 @default.
- W1855265535 hasConcept C11413529 @default.
- W1855265535 hasConcept C118615104 @default.
- W1855265535 hasConcept C122041747 @default.
- W1855265535 hasConcept C12362212 @default.
- W1855265535 hasConcept C127413603 @default.
- W1855265535 hasConcept C129848803 @default.
- W1855265535 hasConcept C129997835 @default.
- W1855265535 hasConcept C134306372 @default.
- W1855265535 hasConcept C140779682 @default.
- W1855265535 hasConcept C154945302 @default.
- W1855265535 hasConcept C158453530 @default.
- W1855265535 hasConcept C17744445 @default.
- W1855265535 hasConcept C191795146 @default.
- W1855265535 hasConcept C196216189 @default.
- W1855265535 hasConcept C199539241 @default.
- W1855265535 hasConcept C202444582 @default.
- W1855265535 hasConcept C20326153 @default.
- W1855265535 hasConcept C28855332 @default.
- W1855265535 hasConcept C2985880046 @default.
- W1855265535 hasConcept C31972630 @default.
- W1855265535 hasConcept C33923547 @default.
- W1855265535 hasConcept C34388435 @default.
- W1855265535 hasConcept C41008148 @default.
- W1855265535 hasConcept C47432892 @default.
- W1855265535 hasConcept C554190296 @default.
- W1855265535 hasConcept C66938386 @default.
- W1855265535 hasConcept C70958404 @default.
- W1855265535 hasConcept C74193536 @default.
- W1855265535 hasConcept C76155785 @default.
- W1855265535 hasConcept C99730327 @default.
- W1855265535 hasConceptScore W1855265535C102519508 @default.
- W1855265535 hasConceptScore W1855265535C10390562 @default.
- W1855265535 hasConceptScore W1855265535C104267543 @default.
- W1855265535 hasConceptScore W1855265535C105795698 @default.
- W1855265535 hasConceptScore W1855265535C106131492 @default.
- W1855265535 hasConceptScore W1855265535C11413529 @default.
- W1855265535 hasConceptScore W1855265535C118615104 @default.