Matches in SemOpenAlex for { <https://semopenalex.org/work/W18553681> ?p ?o ?g. }
- W18553681 endingPage "37" @default.
- W18553681 startingPage "25" @default.
- W18553681 abstract "SUMMARY Markov chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler, have provided a Bayesian inference machine in image analysis and in other areas of spatial statistics for several years, founded on the pioneering ideas of Ulf Grenander. More recently, the observation that hyperparameters can be included as part of the updating schedule and the fact that almost any multivariate distribution is equivalently a Markov random field has opened the way to the use of MCMC in general Bayesian computation. In this paper, we trace the early development of MCMC in Bayesian inference, review some recent computational progress in statistical physics, based on the introduction of auxiliary variables, and discuss its current and future relevance in Bayesian applications. We briefly describe a simple MCMC implementation for the Bayesian analysis of agricultural field experiments, with which we have some practical experience." @default.
- W18553681 created "2016-06-24" @default.
- W18553681 creator A5013914716 @default.
- W18553681 creator A5056693273 @default.
- W18553681 date "1993-09-01" @default.
- W18553681 modified "2023-10-05" @default.
- W18553681 title "Spatial Statistics and Bayesian Computation" @default.
- W18553681 cites W1604521381 @default.
- W18553681 cites W1969758109 @default.
- W18553681 cites W1976352460 @default.
- W18553681 cites W1978126283 @default.
- W18553681 cites W1980604451 @default.
- W18553681 cites W1984941527 @default.
- W18553681 cites W1993338429 @default.
- W18553681 cites W2004014822 @default.
- W18553681 cites W2005697295 @default.
- W18553681 cites W2008830181 @default.
- W18553681 cites W2010341603 @default.
- W18553681 cites W2013623860 @default.
- W18553681 cites W2020999234 @default.
- W18553681 cites W2023502716 @default.
- W18553681 cites W2027840429 @default.
- W18553681 cites W2028283969 @default.
- W18553681 cites W2029046090 @default.
- W18553681 cites W2037139490 @default.
- W18553681 cites W2043694962 @default.
- W18553681 cites W2047289743 @default.
- W18553681 cites W2049590639 @default.
- W18553681 cites W2056280988 @default.
- W18553681 cites W2060858521 @default.
- W18553681 cites W2065557403 @default.
- W18553681 cites W2078238424 @default.
- W18553681 cites W2092331357 @default.
- W18553681 cites W2098507775 @default.
- W18553681 cites W2121809824 @default.
- W18553681 cites W2122891730 @default.
- W18553681 cites W2138309709 @default.
- W18553681 cites W2159793005 @default.
- W18553681 cites W2168530812 @default.
- W18553681 cites W2168962753 @default.
- W18553681 cites W2329850743 @default.
- W18553681 cites W4243430254 @default.
- W18553681 cites W4248231181 @default.
- W18553681 cites W4253250161 @default.
- W18553681 cites W4298221601 @default.
- W18553681 cites W4377077282 @default.
- W18553681 doi "https://doi.org/10.1111/j.2517-6161.1993.tb01467.x" @default.
- W18553681 hasPublicationYear "1993" @default.
- W18553681 type Work @default.
- W18553681 sameAs 18553681 @default.
- W18553681 citedByCount "210" @default.
- W18553681 countsByYear W185536812012 @default.
- W18553681 countsByYear W185536812013 @default.
- W18553681 countsByYear W185536812014 @default.
- W18553681 countsByYear W185536812015 @default.
- W18553681 countsByYear W185536812016 @default.
- W18553681 countsByYear W185536812017 @default.
- W18553681 countsByYear W185536812018 @default.
- W18553681 countsByYear W185536812019 @default.
- W18553681 countsByYear W185536812020 @default.
- W18553681 countsByYear W185536812021 @default.
- W18553681 countsByYear W185536812022 @default.
- W18553681 countsByYear W185536812023 @default.
- W18553681 crossrefType "journal-article" @default.
- W18553681 hasAuthorship W18553681A5013914716 @default.
- W18553681 hasAuthorship W18553681A5056693273 @default.
- W18553681 hasConcept C101112237 @default.
- W18553681 hasConcept C107673813 @default.
- W18553681 hasConcept C111350023 @default.
- W18553681 hasConcept C119857082 @default.
- W18553681 hasConcept C154945302 @default.
- W18553681 hasConcept C158424031 @default.
- W18553681 hasConcept C160234255 @default.
- W18553681 hasConcept C204693719 @default.
- W18553681 hasConcept C2776214188 @default.
- W18553681 hasConcept C2779377595 @default.
- W18553681 hasConcept C41008148 @default.
- W18553681 hasConcept C71983512 @default.
- W18553681 hasConceptScore W18553681C101112237 @default.
- W18553681 hasConceptScore W18553681C107673813 @default.
- W18553681 hasConceptScore W18553681C111350023 @default.
- W18553681 hasConceptScore W18553681C119857082 @default.
- W18553681 hasConceptScore W18553681C154945302 @default.
- W18553681 hasConceptScore W18553681C158424031 @default.
- W18553681 hasConceptScore W18553681C160234255 @default.
- W18553681 hasConceptScore W18553681C204693719 @default.
- W18553681 hasConceptScore W18553681C2776214188 @default.
- W18553681 hasConceptScore W18553681C2779377595 @default.
- W18553681 hasConceptScore W18553681C41008148 @default.
- W18553681 hasConceptScore W18553681C71983512 @default.
- W18553681 hasIssue "1" @default.
- W18553681 hasLocation W185536811 @default.
- W18553681 hasOpenAccess W18553681 @default.
- W18553681 hasPrimaryLocation W185536811 @default.
- W18553681 hasRelatedWork W18553681 @default.
- W18553681 hasRelatedWork W1988684120 @default.
- W18553681 hasRelatedWork W2070088861 @default.
- W18553681 hasRelatedWork W2146501959 @default.