Matches in SemOpenAlex for { <https://semopenalex.org/work/W1855576952> ?p ?o ?g. }
- W1855576952 abstract "Abstract We introduce a mixed regression model for mortality data which can be decomposed into a deterministic trend component explained by the covariates age and calendar year, a multivariate Gaussian time series part not explained by the covariates, and binomial risk. Data can be analyzed by means of a simple logistic regression model when the multivariate Gaussian time series component is absent and there is no overdispersion. In this paper we rather allow for overdispersion and the mixed regression model is fitted to mortality data from the United States and Sweden, with the aim to provide prediction and intervals for future mortality and annuity premium, as well as smoothing historical data, using the best linear unbiased predictor. We find that the form of the Gaussian time series has a large impact on the width of the prediction intervals, and it poses some new questions on proper model selection." @default.
- W1855576952 created "2016-06-24" @default.
- W1855576952 creator A5046049559 @default.
- W1855576952 creator A5066828213 @default.
- W1855576952 date "2015-11-01" @default.
- W1855576952 modified "2023-09-29" @default.
- W1855576952 title "Multivariate time series modeling, estimation and prediction of mortalities" @default.
- W1855576952 cites W102716725 @default.
- W1855576952 cites W1410350041 @default.
- W1855576952 cites W1520053542 @default.
- W1855576952 cites W1601044528 @default.
- W1855576952 cites W1810395884 @default.
- W1855576952 cites W1841708469 @default.
- W1855576952 cites W188615887 @default.
- W1855576952 cites W1965267599 @default.
- W1855576952 cites W1965687307 @default.
- W1855576952 cites W1969498530 @default.
- W1855576952 cites W1982585616 @default.
- W1855576952 cites W1990420052 @default.
- W1855576952 cites W2003599805 @default.
- W1855576952 cites W2006378613 @default.
- W1855576952 cites W2014581807 @default.
- W1855576952 cites W2021581080 @default.
- W1855576952 cites W2024673388 @default.
- W1855576952 cites W2025917720 @default.
- W1855576952 cites W2031044368 @default.
- W1855576952 cites W2033929419 @default.
- W1855576952 cites W2037733739 @default.
- W1855576952 cites W2039894932 @default.
- W1855576952 cites W2042636783 @default.
- W1855576952 cites W2046715695 @default.
- W1855576952 cites W2049649231 @default.
- W1855576952 cites W2049781056 @default.
- W1855576952 cites W2050846110 @default.
- W1855576952 cites W2052350044 @default.
- W1855576952 cites W2052866302 @default.
- W1855576952 cites W2057268325 @default.
- W1855576952 cites W2061958304 @default.
- W1855576952 cites W2080490750 @default.
- W1855576952 cites W2087717346 @default.
- W1855576952 cites W2093754907 @default.
- W1855576952 cites W2095470403 @default.
- W1855576952 cites W2096617164 @default.
- W1855576952 cites W2101518413 @default.
- W1855576952 cites W2105135861 @default.
- W1855576952 cites W2115041626 @default.
- W1855576952 cites W2120297822 @default.
- W1855576952 cites W2120980979 @default.
- W1855576952 cites W2122531099 @default.
- W1855576952 cites W2130267576 @default.
- W1855576952 cites W2140971281 @default.
- W1855576952 cites W2141553554 @default.
- W1855576952 cites W2157291679 @default.
- W1855576952 cites W2158712340 @default.
- W1855576952 cites W2171195731 @default.
- W1855576952 cites W2294384412 @default.
- W1855576952 cites W2322936968 @default.
- W1855576952 cites W2467077495 @default.
- W1855576952 cites W3121942314 @default.
- W1855576952 cites W3125590267 @default.
- W1855576952 cites W2013866489 @default.
- W1855576952 doi "https://doi.org/10.1016/j.insmatheco.2015.09.013" @default.
- W1855576952 hasPublicationYear "2015" @default.
- W1855576952 type Work @default.
- W1855576952 sameAs 1855576952 @default.
- W1855576952 citedByCount "7" @default.
- W1855576952 countsByYear W18555769522014 @default.
- W1855576952 countsByYear W18555769522017 @default.
- W1855576952 countsByYear W18555769522018 @default.
- W1855576952 countsByYear W18555769522019 @default.
- W1855576952 countsByYear W18555769522020 @default.
- W1855576952 countsByYear W18555769522022 @default.
- W1855576952 crossrefType "journal-article" @default.
- W1855576952 hasAuthorship W1855576952A5046049559 @default.
- W1855576952 hasAuthorship W1855576952A5066828213 @default.
- W1855576952 hasBestOaLocation W18555769521 @default.
- W1855576952 hasConcept C100906024 @default.
- W1855576952 hasConcept C105795698 @default.
- W1855576952 hasConcept C117236510 @default.
- W1855576952 hasConcept C119043178 @default.
- W1855576952 hasConcept C143724316 @default.
- W1855576952 hasConcept C149782125 @default.
- W1855576952 hasConcept C151406439 @default.
- W1855576952 hasConcept C151730666 @default.
- W1855576952 hasConcept C151956035 @default.
- W1855576952 hasConcept C161584116 @default.
- W1855576952 hasConcept C33643355 @default.
- W1855576952 hasConcept C33923547 @default.
- W1855576952 hasConcept C86803240 @default.
- W1855576952 hasConceptScore W1855576952C100906024 @default.
- W1855576952 hasConceptScore W1855576952C105795698 @default.
- W1855576952 hasConceptScore W1855576952C117236510 @default.
- W1855576952 hasConceptScore W1855576952C119043178 @default.
- W1855576952 hasConceptScore W1855576952C143724316 @default.
- W1855576952 hasConceptScore W1855576952C149782125 @default.
- W1855576952 hasConceptScore W1855576952C151406439 @default.
- W1855576952 hasConceptScore W1855576952C151730666 @default.
- W1855576952 hasConceptScore W1855576952C151956035 @default.
- W1855576952 hasConceptScore W1855576952C161584116 @default.
- W1855576952 hasConceptScore W1855576952C33643355 @default.