Matches in SemOpenAlex for { <https://semopenalex.org/work/W1856248871> ?p ?o ?g. }
- W1856248871 endingPage "5286" @default.
- W1856248871 startingPage "5269" @default.
- W1856248871 abstract "Key points Inadequate nutrient intake during early life can programme a low adult muscle mass. We have used a mouse model to identify the developmental window when the skeletal musculature is vulnerable to programming and to identify factors that limit the muscle's ability to respond when normal nutrition is restored. We established that the developmental age when nutritional rehabilitation occurs following an episode of poor nutrition, rather than the duration or severity of the nutrient restriction, is the critical factor that determines if muscle mass can be recuperated. The ability to recover depends on whether the muscles’ translational capacity, i.e. ribosomal abundance, can increase sufficiently to raise protein synthesis rates sufficiently to accelerate protein deposition. We show that the ability to increase ribosomal abundance was associated with increased expression of the nucleolar transcription factor UBF (upstream binding factor), which regulates RNA polymerase 1 activity and rRNA transcription, the limiting factor for ribosomal production. Abstract Nutritionally‐induced growth faltering in the perinatal period has been associated with reduced adult skeletal muscle mass; however, the mechanisms responsible for this are unclear. To identify the factors that determine the recuperative capacity of muscle mass, we studied offspring of FVB mouse dams fed a protein‐restricted diet during gestation (GLP) or pups suckled from postnatal day 1 (PN1) to PN11 (E‐UN), or PN11 to PN22 (L‐UN) on protein‐restricted or control dams. All pups were refed under control conditions following the episode of undernutrition. Before refeeding, and 2, 7 and 21 days later, muscle protein synthesis was measured in vivo . There were no long‐term deficits in protein mass in GLP and E‐UN offspring, but in L‐UN offspring muscle protein mass remained significantly smaller even after 18 months ( P < 0.001). E‐UN differed from L‐UN offspring by their capacity to upregulate postprandial muscle protein synthesis when refed ( P < 0.001), a difference that was attributable to a transient increase in ribosomal abundance, i.e. translational capacity, in E‐UN offspring ( P < 0.05); translational efficiency was similar across dietary treatments. The postprandial phosphorylation of Akt and extracellular signal‐regulated protein kinases were similar among treatments. However, activation of the ribosomal S6 kinase 1 via mTOR ( P < 0.02), and total upstream binding factor abundance were significantly greater in E‐UN than L‐UN offspring ( P < 0.02). The results indicate that the capacity of muscles to recover following perinatal undernutrition depends on developmental age as this establishes whether ribosome abundance can be enhanced sufficiently to promote the protein synthesis rates required to accelerate protein deposition for catch‐up growth." @default.
- W1856248871 created "2016-06-24" @default.
- W1856248871 creator A5042594822 @default.
- W1856248871 creator A5045762120 @default.
- W1856248871 creator A5050510653 @default.
- W1856248871 creator A5062238729 @default.
- W1856248871 creator A5069525578 @default.
- W1856248871 creator A5080016405 @default.
- W1856248871 date "2014-10-22" @default.
- W1856248871 modified "2023-10-18" @default.
- W1856248871 title "Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice" @default.
- W1856248871 cites W150023738 @default.
- W1856248871 cites W1585889019 @default.
- W1856248871 cites W1966170191 @default.
- W1856248871 cites W1987171082 @default.
- W1856248871 cites W1996264962 @default.
- W1856248871 cites W1998626432 @default.
- W1856248871 cites W1999588137 @default.
- W1856248871 cites W2003453262 @default.
- W1856248871 cites W2006144341 @default.
- W1856248871 cites W2009225430 @default.
- W1856248871 cites W2016889455 @default.
- W1856248871 cites W2018202368 @default.
- W1856248871 cites W2021464909 @default.
- W1856248871 cites W2024037519 @default.
- W1856248871 cites W2026102495 @default.
- W1856248871 cites W2028619567 @default.
- W1856248871 cites W2028714428 @default.
- W1856248871 cites W2031277966 @default.
- W1856248871 cites W2035666422 @default.
- W1856248871 cites W2036519084 @default.
- W1856248871 cites W2041619174 @default.
- W1856248871 cites W2046911380 @default.
- W1856248871 cites W2049590417 @default.
- W1856248871 cites W2055535789 @default.
- W1856248871 cites W2058109675 @default.
- W1856248871 cites W2062791463 @default.
- W1856248871 cites W2072363990 @default.
- W1856248871 cites W2074226428 @default.
- W1856248871 cites W2085284291 @default.
- W1856248871 cites W2094765463 @default.
- W1856248871 cites W2096984475 @default.
- W1856248871 cites W2099642200 @default.
- W1856248871 cites W2099680351 @default.
- W1856248871 cites W2100588219 @default.
- W1856248871 cites W2111115697 @default.
- W1856248871 cites W2119282315 @default.
- W1856248871 cites W2120934046 @default.
- W1856248871 cites W2122663644 @default.
- W1856248871 cites W2127050096 @default.
- W1856248871 cites W2130593829 @default.
- W1856248871 cites W2136272779 @default.
- W1856248871 cites W2144282838 @default.
- W1856248871 cites W2144441892 @default.
- W1856248871 cites W2145731761 @default.
- W1856248871 cites W2147522943 @default.
- W1856248871 cites W2154042628 @default.
- W1856248871 cites W2157044462 @default.
- W1856248871 cites W2159798523 @default.
- W1856248871 cites W2161093056 @default.
- W1856248871 cites W2187089464 @default.
- W1856248871 cites W2409386266 @default.
- W1856248871 cites W2416194532 @default.
- W1856248871 cites W2416495394 @default.
- W1856248871 cites W84529627 @default.
- W1856248871 doi "https://doi.org/10.1113/jphysiol.2014.279067" @default.
- W1856248871 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4262338" @default.
- W1856248871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25239457" @default.
- W1856248871 hasPublicationYear "2014" @default.
- W1856248871 type Work @default.
- W1856248871 sameAs 1856248871 @default.
- W1856248871 citedByCount "27" @default.
- W1856248871 countsByYear W18562488712014 @default.
- W1856248871 countsByYear W18562488712016 @default.
- W1856248871 countsByYear W18562488712017 @default.
- W1856248871 countsByYear W18562488712018 @default.
- W1856248871 countsByYear W18562488712019 @default.
- W1856248871 countsByYear W18562488712020 @default.
- W1856248871 countsByYear W18562488712021 @default.
- W1856248871 countsByYear W18562488712022 @default.
- W1856248871 countsByYear W18562488712023 @default.
- W1856248871 crossrefType "journal-article" @default.
- W1856248871 hasAuthorship W1856248871A5042594822 @default.
- W1856248871 hasAuthorship W1856248871A5045762120 @default.
- W1856248871 hasAuthorship W1856248871A5050510653 @default.
- W1856248871 hasAuthorship W1856248871A5062238729 @default.
- W1856248871 hasAuthorship W1856248871A5069525578 @default.
- W1856248871 hasAuthorship W1856248871A5080016405 @default.
- W1856248871 hasBestOaLocation W18562488711 @default.
- W1856248871 hasConcept C104317684 @default.
- W1856248871 hasConcept C105580179 @default.
- W1856248871 hasConcept C112672928 @default.
- W1856248871 hasConcept C126322002 @default.
- W1856248871 hasConcept C134018914 @default.
- W1856248871 hasConcept C2779234561 @default.
- W1856248871 hasConcept C2779959927 @default.
- W1856248871 hasConcept C38062823 @default.
- W1856248871 hasConcept C54355233 @default.