Matches in SemOpenAlex for { <https://semopenalex.org/work/W1856366937> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1856366937 endingPage "484" @default.
- W1856366937 startingPage "458" @default.
- W1856366937 abstract "We study meromorphic extensions of distance and tube zeta functions, as well as of geometric zeta functions of fractal strings. The distance zeta function ζA(s):=∫Aδd(x,A)s−Ndx, where δ>0 is fixed and d(x,A) denotes the Euclidean distance from x to A, has been introduced by the first author in 2009, extending the definition of the zeta function ζL associated with bounded fractal strings L=(ℓj)j≥1 to arbitrary bounded subsets A of the N-dimensional Euclidean space. The abscissa of Lebesgue (i.e., absolute) convergence D(ζA) coincides with D:=dim‾BA, the upper box (or Minkowski) dimension of A. The (visible) complex dimensions of A are the poles of the meromorphic continuation of the fractal zeta function (i.e., the distance or tube zeta function) of A to a suitable connected neighborhood of the “critical line” {Res=D}. We establish several meromorphic extension results, assuming some suitable information about the second term of the asymptotic expansion of the tube function |At| as t→0+, where At is the Euclidean t-neighborhood of A. We pay particular attention to a class of Minkowski measurable sets, such that |At|=tN−D(M+O(tγ)) as t→0+, with γ>0, and to a class of Minkowski nonmeasurable sets, such that |At|=tN−D(G(logt−1)+O(tγ)) as t→0+, where G is a nonconstant periodic function and γ>0. In both cases, we show that ζA can be meromorphically extended (at least) to the open right half-plane {Res>D−γ} and determine the corresponding visible complex dimensions. Furthermore, up to a multiplicative constant, the residue of ζA evaluated at s=D is shown to be equal to M (the Minkowski content of A) and to the mean value of G (the average Minkowski content of A), respectively. Moreover, we construct a class of fractal strings with principal complex dimensions of any prescribed order, as well as with an infinite number of essential singularities on the critical line {Res=D}. Finally, using an appropriate quasiperiodic version of the above construction, with infinitely many suitably chosen quasiperiods associated with a two-parameter family of generalized Cantor sets, we construct “maximally-hyperfractal” compact subsets of RN, for N≥1 arbitrary. These are compact subsets of RN such that the corresponding fractal zeta functions have nonremovable singularities at every point of the critical line {Res=D}." @default.
- W1856366937 created "2016-06-24" @default.
- W1856366937 creator A5042734167 @default.
- W1856366937 creator A5082704719 @default.
- W1856366937 creator A5083710977 @default.
- W1856366937 date "2017-09-01" @default.
- W1856366937 modified "2023-10-18" @default.
- W1856366937 title "Complex dimensions of fractals and meromorphic extensions of fractal zeta functions" @default.
- W1856366937 cites W1975888955 @default.
- W1856366937 cites W1986166453 @default.
- W1856366937 cites W1988835536 @default.
- W1856366937 cites W1988915620 @default.
- W1856366937 cites W1999110501 @default.
- W1856366937 cites W2013423413 @default.
- W1856366937 cites W2019314293 @default.
- W1856366937 cites W2029191352 @default.
- W1856366937 cites W2032481310 @default.
- W1856366937 cites W2045562233 @default.
- W1856366937 cites W2055986333 @default.
- W1856366937 cites W2068639703 @default.
- W1856366937 cites W2075432970 @default.
- W1856366937 cites W2138242926 @default.
- W1856366937 cites W2154626520 @default.
- W1856366937 cites W2170286201 @default.
- W1856366937 cites W2171567243 @default.
- W1856366937 cites W2274194514 @default.
- W1856366937 cites W278306195 @default.
- W1856366937 cites W2963549532 @default.
- W1856366937 cites W2964013224 @default.
- W1856366937 cites W573702276 @default.
- W1856366937 doi "https://doi.org/10.1016/j.jmaa.2017.03.059" @default.
- W1856366937 hasPublicationYear "2017" @default.
- W1856366937 type Work @default.
- W1856366937 sameAs 1856366937 @default.
- W1856366937 citedByCount "6" @default.
- W1856366937 countsByYear W18563669372016 @default.
- W1856366937 countsByYear W18563669372018 @default.
- W1856366937 countsByYear W18563669372019 @default.
- W1856366937 countsByYear W18563669372022 @default.
- W1856366937 countsByYear W18563669372023 @default.
- W1856366937 crossrefType "journal-article" @default.
- W1856366937 hasAuthorship W1856366937A5042734167 @default.
- W1856366937 hasAuthorship W1856366937A5082704719 @default.
- W1856366937 hasAuthorship W1856366937A5083710977 @default.
- W1856366937 hasBestOaLocation W18563669371 @default.
- W1856366937 hasConcept C101597101 @default.
- W1856366937 hasConcept C114614502 @default.
- W1856366937 hasConcept C134306372 @default.
- W1856366937 hasConcept C179117685 @default.
- W1856366937 hasConcept C186450821 @default.
- W1856366937 hasConcept C190333341 @default.
- W1856366937 hasConcept C202444582 @default.
- W1856366937 hasConcept C2524010 @default.
- W1856366937 hasConcept C26546657 @default.
- W1856366937 hasConcept C33923547 @default.
- W1856366937 hasConcept C34388435 @default.
- W1856366937 hasConcept C35235930 @default.
- W1856366937 hasConcept C40636538 @default.
- W1856366937 hasConcept C79464548 @default.
- W1856366937 hasConceptScore W1856366937C101597101 @default.
- W1856366937 hasConceptScore W1856366937C114614502 @default.
- W1856366937 hasConceptScore W1856366937C134306372 @default.
- W1856366937 hasConceptScore W1856366937C179117685 @default.
- W1856366937 hasConceptScore W1856366937C186450821 @default.
- W1856366937 hasConceptScore W1856366937C190333341 @default.
- W1856366937 hasConceptScore W1856366937C202444582 @default.
- W1856366937 hasConceptScore W1856366937C2524010 @default.
- W1856366937 hasConceptScore W1856366937C26546657 @default.
- W1856366937 hasConceptScore W1856366937C33923547 @default.
- W1856366937 hasConceptScore W1856366937C34388435 @default.
- W1856366937 hasConceptScore W1856366937C35235930 @default.
- W1856366937 hasConceptScore W1856366937C40636538 @default.
- W1856366937 hasConceptScore W1856366937C79464548 @default.
- W1856366937 hasFunder F4320306076 @default.
- W1856366937 hasFunder F4320322674 @default.
- W1856366937 hasFunder F4320337227 @default.
- W1856366937 hasIssue "1" @default.
- W1856366937 hasLocation W18563669371 @default.
- W1856366937 hasLocation W18563669372 @default.
- W1856366937 hasOpenAccess W1856366937 @default.
- W1856366937 hasPrimaryLocation W18563669371 @default.
- W1856366937 hasRelatedWork W2055986333 @default.
- W1856366937 hasRelatedWork W2229255668 @default.
- W1856366937 hasRelatedWork W2734820371 @default.
- W1856366937 hasRelatedWork W2962895279 @default.
- W1856366937 hasRelatedWork W3093449145 @default.
- W1856366937 hasRelatedWork W4225634027 @default.
- W1856366937 hasRelatedWork W4287642374 @default.
- W1856366937 hasRelatedWork W4293170432 @default.
- W1856366937 hasRelatedWork W4298946856 @default.
- W1856366937 hasRelatedWork W4366417272 @default.
- W1856366937 hasVolume "453" @default.
- W1856366937 isParatext "false" @default.
- W1856366937 isRetracted "false" @default.
- W1856366937 magId "1856366937" @default.
- W1856366937 workType "article" @default.