Matches in SemOpenAlex for { <https://semopenalex.org/work/W1857641543> ?p ?o ?g. }
- W1857641543 endingPage "2956" @default.
- W1857641543 startingPage "2947" @default.
- W1857641543 abstract "ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum.Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs." @default.
- W1857641543 created "2016-06-24" @default.
- W1857641543 creator A5030794680 @default.
- W1857641543 creator A5032392383 @default.
- W1857641543 creator A5070629839 @default.
- W1857641543 creator A5072571369 @default.
- W1857641543 creator A5080202398 @default.
- W1857641543 date "2015-10-23" @default.
- W1857641543 modified "2023-10-12" @default.
- W1857641543 title "Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries" @default.
- W1857641543 cites W1949231392 @default.
- W1857641543 cites W1964920738 @default.
- W1857641543 cites W1966078017 @default.
- W1857641543 cites W1967394731 @default.
- W1857641543 cites W1972767018 @default.
- W1857641543 cites W1976169056 @default.
- W1857641543 cites W1976221331 @default.
- W1857641543 cites W1987452691 @default.
- W1857641543 cites W1996879303 @default.
- W1857641543 cites W2000549976 @default.
- W1857641543 cites W2002293583 @default.
- W1857641543 cites W2006318126 @default.
- W1857641543 cites W2009305269 @default.
- W1857641543 cites W2012172365 @default.
- W1857641543 cites W2013679072 @default.
- W1857641543 cites W2021117606 @default.
- W1857641543 cites W2025142502 @default.
- W1857641543 cites W2026081217 @default.
- W1857641543 cites W2029682325 @default.
- W1857641543 cites W2031344034 @default.
- W1857641543 cites W2034955430 @default.
- W1857641543 cites W2036249442 @default.
- W1857641543 cites W2070416274 @default.
- W1857641543 cites W2075846519 @default.
- W1857641543 cites W2077051465 @default.
- W1857641543 cites W2079465141 @default.
- W1857641543 cites W2082866588 @default.
- W1857641543 cites W2088003641 @default.
- W1857641543 cites W2088107920 @default.
- W1857641543 cites W2088382443 @default.
- W1857641543 cites W2094941676 @default.
- W1857641543 cites W2100061873 @default.
- W1857641543 cites W2122905108 @default.
- W1857641543 cites W2125467115 @default.
- W1857641543 cites W2146191509 @default.
- W1857641543 cites W2155068194 @default.
- W1857641543 cites W2159557151 @default.
- W1857641543 cites W2166608679 @default.
- W1857641543 cites W2166889055 @default.
- W1857641543 cites W2169070800 @default.
- W1857641543 cites W2169251929 @default.
- W1857641543 cites W2317798799 @default.
- W1857641543 cites W2326478613 @default.
- W1857641543 cites W2332691364 @default.
- W1857641543 cites W4211096336 @default.
- W1857641543 cites W4238248867 @default.
- W1857641543 doi "https://doi.org/10.1021/acs.accounts.5b00427" @default.
- W1857641543 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26496667" @default.
- W1857641543 hasPublicationYear "2015" @default.
- W1857641543 type Work @default.
- W1857641543 sameAs 1857641543 @default.
- W1857641543 citedByCount "188" @default.
- W1857641543 countsByYear W18576415432016 @default.
- W1857641543 countsByYear W18576415432017 @default.
- W1857641543 countsByYear W18576415432018 @default.
- W1857641543 countsByYear W18576415432019 @default.
- W1857641543 countsByYear W18576415432020 @default.
- W1857641543 countsByYear W18576415432021 @default.
- W1857641543 countsByYear W18576415432022 @default.
- W1857641543 countsByYear W18576415432023 @default.
- W1857641543 crossrefType "journal-article" @default.
- W1857641543 hasAuthorship W1857641543A5030794680 @default.
- W1857641543 hasAuthorship W1857641543A5032392383 @default.
- W1857641543 hasAuthorship W1857641543A5070629839 @default.
- W1857641543 hasAuthorship W1857641543A5072571369 @default.
- W1857641543 hasAuthorship W1857641543A5080202398 @default.
- W1857641543 hasBestOaLocation W18576415432 @default.
- W1857641543 hasConcept C119599485 @default.
- W1857641543 hasConcept C121332964 @default.
- W1857641543 hasConcept C127413603 @default.
- W1857641543 hasConcept C147789679 @default.
- W1857641543 hasConcept C163258240 @default.
- W1857641543 hasConcept C165886283 @default.
- W1857641543 hasConcept C171250308 @default.
- W1857641543 hasConcept C17525397 @default.
- W1857641543 hasConcept C185004128 @default.
- W1857641543 hasConcept C185592680 @default.
- W1857641543 hasConcept C190538518 @default.
- W1857641543 hasConcept C192562407 @default.
- W1857641543 hasConcept C2994426979 @default.
- W1857641543 hasConcept C49110097 @default.
- W1857641543 hasConcept C52859227 @default.
- W1857641543 hasConcept C555008776 @default.
- W1857641543 hasConcept C62520636 @default.
- W1857641543 hasConcept C68801617 @default.
- W1857641543 hasConcept C73916439 @default.
- W1857641543 hasConcept C89395315 @default.
- W1857641543 hasConcept C97355855 @default.