Matches in SemOpenAlex for { <https://semopenalex.org/work/W1858246752> ?p ?o ?g. }
- W1858246752 abstract "Data quality issues such as data imbalance and data noise have great impact on the performances of many classifiers. Althoughthe co-existence of imbalance and noise appears in many real world datasets, the issue of imbalance and noise have mostlybeen treated separately due to their different causes and problematic consequences. However, doing so may ignore the mutualeffects thus may not achieve optimal classification performance. In this research, we propose a model fusion based framework,termed K Nearest Gaussian (KNG) to tackle the imbalance and noise issues jointly. KNG employs generative modeling method(GMM) to extract the data characteristics from the training data which are less sensitive to data imbalance and noise. The datacharacteristics are then used to establish Gaussian confidence regions which are used to achieve final classification in a K nearestneighbor (KNN) manner. Experiments on seven UCI benchmark datasets and one medical imaging dataset show KNG methodgreatly outperforms traditional classification methods in dealing with imbalanced classification problems with noisy dataset." @default.
- W1858246752 created "2016-06-24" @default.
- W1858246752 creator A5023558000 @default.
- W1858246752 creator A5041110468 @default.
- W1858246752 creator A5055997581 @default.
- W1858246752 creator A5069823101 @default.
- W1858246752 creator A5079603663 @default.
- W1858246752 creator A5089704892 @default.
- W1858246752 date "2015-08-12" @default.
- W1858246752 modified "2023-09-27" @default.
- W1858246752 title "K Nearest Gaussian-A model fusion based framework for imbalanced classification with noisy dataset" @default.
- W1858246752 cites W1503432700 @default.
- W1858246752 cites W1506588750 @default.
- W1858246752 cites W1528140509 @default.
- W1858246752 cites W1537555431 @default.
- W1858246752 cites W1548505798 @default.
- W1858246752 cites W1551909886 @default.
- W1858246752 cites W1565377632 @default.
- W1858246752 cites W1596345407 @default.
- W1858246752 cites W1747560310 @default.
- W1858246752 cites W1766594731 @default.
- W1858246752 cites W1999011285 @default.
- W1858246752 cites W2000016823 @default.
- W1858246752 cites W2034841618 @default.
- W1858246752 cites W2035149165 @default.
- W1858246752 cites W2049633694 @default.
- W1858246752 cites W2074937451 @default.
- W1858246752 cites W2096094293 @default.
- W1858246752 cites W2097998348 @default.
- W1858246752 cites W2104933073 @default.
- W1858246752 cites W2105594594 @default.
- W1858246752 cites W2107498895 @default.
- W1858246752 cites W2118978333 @default.
- W1858246752 cites W2119821739 @default.
- W1858246752 cites W2122111042 @default.
- W1858246752 cites W2126227492 @default.
- W1858246752 cites W2133990480 @default.
- W1858246752 cites W2137880226 @default.
- W1858246752 cites W2148143831 @default.
- W1858246752 cites W2151763080 @default.
- W1858246752 cites W2152195021 @default.
- W1858246752 cites W2153635508 @default.
- W1858246752 cites W2157550316 @default.
- W1858246752 cites W2163614729 @default.
- W1858246752 cites W2165880886 @default.
- W1858246752 cites W2202505358 @default.
- W1858246752 cites W2264141680 @default.
- W1858246752 cites W2313890621 @default.
- W1858246752 cites W2402846924 @default.
- W1858246752 cites W2468920619 @default.
- W1858246752 cites W2776921015 @default.
- W1858246752 cites W306662213 @default.
- W1858246752 cites W3120740533 @default.
- W1858246752 cites W405632 @default.
- W1858246752 doi "https://doi.org/10.5430/air.v4n2p126" @default.
- W1858246752 hasPublicationYear "2015" @default.
- W1858246752 type Work @default.
- W1858246752 sameAs 1858246752 @default.
- W1858246752 citedByCount "1" @default.
- W1858246752 countsByYear W18582467522016 @default.
- W1858246752 crossrefType "journal-article" @default.
- W1858246752 hasAuthorship W1858246752A5023558000 @default.
- W1858246752 hasAuthorship W1858246752A5041110468 @default.
- W1858246752 hasAuthorship W1858246752A5055997581 @default.
- W1858246752 hasAuthorship W1858246752A5069823101 @default.
- W1858246752 hasAuthorship W1858246752A5079603663 @default.
- W1858246752 hasAuthorship W1858246752A5089704892 @default.
- W1858246752 hasBestOaLocation W18582467521 @default.
- W1858246752 hasConcept C115961682 @default.
- W1858246752 hasConcept C119857082 @default.
- W1858246752 hasConcept C121332964 @default.
- W1858246752 hasConcept C12267149 @default.
- W1858246752 hasConcept C124101348 @default.
- W1858246752 hasConcept C13280743 @default.
- W1858246752 hasConcept C153180895 @default.
- W1858246752 hasConcept C154945302 @default.
- W1858246752 hasConcept C163716315 @default.
- W1858246752 hasConcept C185798385 @default.
- W1858246752 hasConcept C205649164 @default.
- W1858246752 hasConcept C2781170535 @default.
- W1858246752 hasConcept C41008148 @default.
- W1858246752 hasConcept C4199805 @default.
- W1858246752 hasConcept C61224824 @default.
- W1858246752 hasConcept C62520636 @default.
- W1858246752 hasConcept C99498987 @default.
- W1858246752 hasConceptScore W1858246752C115961682 @default.
- W1858246752 hasConceptScore W1858246752C119857082 @default.
- W1858246752 hasConceptScore W1858246752C121332964 @default.
- W1858246752 hasConceptScore W1858246752C12267149 @default.
- W1858246752 hasConceptScore W1858246752C124101348 @default.
- W1858246752 hasConceptScore W1858246752C13280743 @default.
- W1858246752 hasConceptScore W1858246752C153180895 @default.
- W1858246752 hasConceptScore W1858246752C154945302 @default.
- W1858246752 hasConceptScore W1858246752C163716315 @default.
- W1858246752 hasConceptScore W1858246752C185798385 @default.
- W1858246752 hasConceptScore W1858246752C205649164 @default.
- W1858246752 hasConceptScore W1858246752C2781170535 @default.
- W1858246752 hasConceptScore W1858246752C41008148 @default.
- W1858246752 hasConceptScore W1858246752C4199805 @default.
- W1858246752 hasConceptScore W1858246752C61224824 @default.