Matches in SemOpenAlex for { <https://semopenalex.org/work/W1858874872> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W1858874872 endingPage "325" @default.
- W1858874872 startingPage "313" @default.
- W1858874872 abstract "The class of automaton groups is a rich source of the simplest examples of infinite Burnside groups. However, no such examples have been constructed in some classes, as groups generated by non reversible automata. It was recently shown that 2-state reversible Mealy automata cannot generate infinite Burnside groups. Here we extend this result to connected 3-state reversible Mealy automata, using new original techniques. The results rely on a fine analysis of associated orbit trees and a new characterization of the existence of elements of infinite order." @default.
- W1858874872 created "2016-06-24" @default.
- W1858874872 creator A5040182806 @default.
- W1858874872 creator A5051811031 @default.
- W1858874872 creator A5059046132 @default.
- W1858874872 date "2015-01-01" @default.
- W1858874872 modified "2023-09-30" @default.
- W1858874872 title "A Connected 3-State Reversible Mealy Automaton Cannot Generate an Infinite Burnside Group" @default.
- W1858874872 cites W1584226511 @default.
- W1858874872 cites W1965368947 @default.
- W1858874872 cites W1979302728 @default.
- W1858874872 cites W1980999981 @default.
- W1858874872 cites W2003004532 @default.
- W1858874872 cites W2023463206 @default.
- W1858874872 cites W2042740070 @default.
- W1858874872 cites W2949488382 @default.
- W1858874872 cites W2963744602 @default.
- W1858874872 cites W3104270914 @default.
- W1858874872 cites W4238643201 @default.
- W1858874872 doi "https://doi.org/10.1007/978-3-319-21500-6_25" @default.
- W1858874872 hasPublicationYear "2015" @default.
- W1858874872 type Work @default.
- W1858874872 sameAs 1858874872 @default.
- W1858874872 citedByCount "8" @default.
- W1858874872 countsByYear W18588748722015 @default.
- W1858874872 countsByYear W18588748722016 @default.
- W1858874872 countsByYear W18588748722018 @default.
- W1858874872 countsByYear W18588748722019 @default.
- W1858874872 countsByYear W18588748722020 @default.
- W1858874872 crossrefType "book-chapter" @default.
- W1858874872 hasAuthorship W1858874872A5040182806 @default.
- W1858874872 hasAuthorship W1858874872A5051811031 @default.
- W1858874872 hasAuthorship W1858874872A5059046132 @default.
- W1858874872 hasBestOaLocation W18588748722 @default.
- W1858874872 hasConcept C112505250 @default.
- W1858874872 hasConcept C121332964 @default.
- W1858874872 hasConcept C2781311116 @default.
- W1858874872 hasConcept C41008148 @default.
- W1858874872 hasConcept C62520636 @default.
- W1858874872 hasConcept C80444323 @default.
- W1858874872 hasConceptScore W1858874872C112505250 @default.
- W1858874872 hasConceptScore W1858874872C121332964 @default.
- W1858874872 hasConceptScore W1858874872C2781311116 @default.
- W1858874872 hasConceptScore W1858874872C41008148 @default.
- W1858874872 hasConceptScore W1858874872C62520636 @default.
- W1858874872 hasConceptScore W1858874872C80444323 @default.
- W1858874872 hasLocation W18588748721 @default.
- W1858874872 hasLocation W18588748722 @default.
- W1858874872 hasOpenAccess W1858874872 @default.
- W1858874872 hasPrimaryLocation W18588748721 @default.
- W1858874872 hasRelatedWork W153904579 @default.
- W1858874872 hasRelatedWork W1584197856 @default.
- W1858874872 hasRelatedWork W1962072139 @default.
- W1858874872 hasRelatedWork W2047802234 @default.
- W1858874872 hasRelatedWork W2325436751 @default.
- W1858874872 hasRelatedWork W2330733397 @default.
- W1858874872 hasRelatedWork W2368796975 @default.
- W1858874872 hasRelatedWork W2740942814 @default.
- W1858874872 hasRelatedWork W2602338684 @default.
- W1858874872 hasRelatedWork W2751931981 @default.
- W1858874872 isParatext "false" @default.
- W1858874872 isRetracted "false" @default.
- W1858874872 magId "1858874872" @default.
- W1858874872 workType "book-chapter" @default.