Matches in SemOpenAlex for { <https://semopenalex.org/work/W1859455957> ?p ?o ?g. }
- W1859455957 endingPage "65" @default.
- W1859455957 startingPage "53" @default.
- W1859455957 abstract "Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m³ (stderr = 0.15) and 8.47 μg/m³ (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time-activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m³, stderr = 1.08, SidePak = 11.85 µg/m³, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m³, stderr = 0.39, SidePak = 24.93 µg/m³, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m³, stderr = 0.23, SidePak = 5.63 µg/m³, stderr = 0.08). Mean PM(2.5) at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m³ (stderr = 0.23) to 12.38 µg/m³ (stderr = 0.45). By comparison, mean 24-h PM(2.5) measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m³ during the study period. The range of average PM(2.5) exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m³ (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals' 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM(2.5) exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates.Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks." @default.
- W1859455957 created "2016-06-24" @default.
- W1859455957 creator A5002090288 @default.
- W1859455957 creator A5020802836 @default.
- W1859455957 creator A5033206586 @default.
- W1859455957 creator A5036284545 @default.
- W1859455957 creator A5056685417 @default.
- W1859455957 creator A5070380806 @default.
- W1859455957 date "2015-10-29" @default.
- W1859455957 modified "2023-10-15" @default.
- W1859455957 title "Applications of GPS-tracked personal and fixed-location PM<sub>2.5</sub> continuous exposure monitoring" @default.
- W1859455957 cites W1942437568 @default.
- W1859455957 cites W1978850056 @default.
- W1859455957 cites W1979799510 @default.
- W1859455957 cites W1981303445 @default.
- W1859455957 cites W1983044506 @default.
- W1859455957 cites W1988177212 @default.
- W1859455957 cites W1989684591 @default.
- W1859455957 cites W1991995369 @default.
- W1859455957 cites W1995063720 @default.
- W1859455957 cites W1997026875 @default.
- W1859455957 cites W1997753581 @default.
- W1859455957 cites W2002108469 @default.
- W1859455957 cites W2002685456 @default.
- W1859455957 cites W2011400943 @default.
- W1859455957 cites W2017070219 @default.
- W1859455957 cites W2031451281 @default.
- W1859455957 cites W2036014113 @default.
- W1859455957 cites W2042428217 @default.
- W1859455957 cites W2045469581 @default.
- W1859455957 cites W2046306852 @default.
- W1859455957 cites W2046387272 @default.
- W1859455957 cites W2059271594 @default.
- W1859455957 cites W2064148596 @default.
- W1859455957 cites W2064948487 @default.
- W1859455957 cites W2065384594 @default.
- W1859455957 cites W2066544083 @default.
- W1859455957 cites W2071148627 @default.
- W1859455957 cites W2074748185 @default.
- W1859455957 cites W2075602753 @default.
- W1859455957 cites W2078086855 @default.
- W1859455957 cites W2081979340 @default.
- W1859455957 cites W2087276557 @default.
- W1859455957 cites W2093161332 @default.
- W1859455957 cites W2098637521 @default.
- W1859455957 cites W2102028191 @default.
- W1859455957 cites W2106553619 @default.
- W1859455957 cites W2135336683 @default.
- W1859455957 cites W2136898871 @default.
- W1859455957 cites W2140052280 @default.
- W1859455957 cites W2142040910 @default.
- W1859455957 cites W2143763841 @default.
- W1859455957 cites W2150751323 @default.
- W1859455957 cites W2158341208 @default.
- W1859455957 cites W2159200188 @default.
- W1859455957 cites W2167546015 @default.
- W1859455957 cites W2171386123 @default.
- W1859455957 cites W4241191496 @default.
- W1859455957 doi "https://doi.org/10.1080/10962247.2015.1108942" @default.
- W1859455957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26512925" @default.
- W1859455957 hasPublicationYear "2015" @default.
- W1859455957 type Work @default.
- W1859455957 sameAs 1859455957 @default.
- W1859455957 citedByCount "35" @default.
- W1859455957 countsByYear W18594559572017 @default.
- W1859455957 countsByYear W18594559572018 @default.
- W1859455957 countsByYear W18594559572019 @default.
- W1859455957 countsByYear W18594559572020 @default.
- W1859455957 countsByYear W18594559572021 @default.
- W1859455957 countsByYear W18594559572022 @default.
- W1859455957 countsByYear W18594559572023 @default.
- W1859455957 crossrefType "journal-article" @default.
- W1859455957 hasAuthorship W1859455957A5002090288 @default.
- W1859455957 hasAuthorship W1859455957A5020802836 @default.
- W1859455957 hasAuthorship W1859455957A5033206586 @default.
- W1859455957 hasAuthorship W1859455957A5036284545 @default.
- W1859455957 hasAuthorship W1859455957A5056685417 @default.
- W1859455957 hasAuthorship W1859455957A5070380806 @default.
- W1859455957 hasBestOaLocation W18594559571 @default.
- W1859455957 hasConcept C205649164 @default.
- W1859455957 hasConcept C39432304 @default.
- W1859455957 hasConcept C41008148 @default.
- W1859455957 hasConcept C60229501 @default.
- W1859455957 hasConcept C76155785 @default.
- W1859455957 hasConceptScore W1859455957C205649164 @default.
- W1859455957 hasConceptScore W1859455957C39432304 @default.
- W1859455957 hasConceptScore W1859455957C41008148 @default.
- W1859455957 hasConceptScore W1859455957C60229501 @default.
- W1859455957 hasConceptScore W1859455957C76155785 @default.
- W1859455957 hasFunder F4320309309 @default.
- W1859455957 hasIssue "1" @default.
- W1859455957 hasLocation W18594559571 @default.
- W1859455957 hasLocation W18594559572 @default.
- W1859455957 hasOpenAccess W1859455957 @default.
- W1859455957 hasPrimaryLocation W18594559571 @default.
- W1859455957 hasRelatedWork W1550496571 @default.
- W1859455957 hasRelatedWork W2366610330 @default.
- W1859455957 hasRelatedWork W2384744344 @default.