Matches in SemOpenAlex for { <https://semopenalex.org/work/W1859851758> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1859851758 abstract "Let G be the group of symplectic (unimodular) automorphisms of the free associative algebra on two generators. A theorem of G.Wilson and the first author asserts that G acts transitively the Calogero-Moser spaces C_n for all n. We generalize this theorem in two ways: first, we prove that the action of G on C_n is doubly transitive, meaning that G acts transitively on the configuration space of (ordered) pairs of points in C_n; second, we prove that the diagonal action of G on the product of (any number of) copies of C_n is transitive provided the corresponding n's are pairwise distinct. In the second part of the paper, we study the isotropy subgroups G_n of G in C_n. We equip each G_n with the structure of an ind-algebraic group and classify the Borel subgroups of these ind-algebraic groups for all n. Our classification shows that every Borel subgroup of G (= G_0) is conjugate to the subgroup B of triangular (elementary) automorphisms; on the other hand, for n > 0, the conjugacy classes of Borel subgroups of G_n are parametrized by certain orbits of B in C_n. Our main result is that the conjugacy classes of non-abelian Borel subgroups of G_n correspond precisely to the B-orbits of the C^*-fixed points in C_n and thus, are in bijection with the partitions of n. We also prove an infinite-dimensional analogue of the classical theorem of R.Steinberg, characterizing the (non-abelian) Borel subgroups of G_n in purely group-theoretic terms. Together with our classification this last theorem implies that the G_n are pairwise non-isomorphic as abstract groups. Our study of the groups G_n is motivated by the fact that these are the automorphism groups of non-isomorphic simple algebras Morita equivalent to the Weyl algebra A_1(C). From this perspective, our results generalize well-known theorems of J.Dixmier and L.Makar-Limanov about the automorphism group of A_1(C)." @default.
- W1859851758 created "2016-06-24" @default.
- W1859851758 creator A5023624760 @default.
- W1859851758 creator A5090418403 @default.
- W1859851758 creator A5091861457 @default.
- W1859851758 date "2014-01-28" @default.
- W1859851758 modified "2023-10-18" @default.
- W1859851758 title "Dixmier Groups and Borel Subgroups" @default.
- W1859851758 cites W1506425503 @default.
- W1859851758 cites W1581940193 @default.
- W1859851758 cites W1584927588 @default.
- W1859851758 cites W1606512346 @default.
- W1859851758 cites W1669580772 @default.
- W1859851758 cites W1726340800 @default.
- W1859851758 cites W1977670827 @default.
- W1859851758 cites W1985100609 @default.
- W1859851758 cites W1999259950 @default.
- W1859851758 cites W2009755079 @default.
- W1859851758 cites W2011782190 @default.
- W1859851758 cites W2022966562 @default.
- W1859851758 cites W2040578522 @default.
- W1859851758 cites W2040960421 @default.
- W1859851758 cites W2043549662 @default.
- W1859851758 cites W2048258683 @default.
- W1859851758 cites W2061630914 @default.
- W1859851758 cites W2076037841 @default.
- W1859851758 cites W2082122403 @default.
- W1859851758 cites W2082698125 @default.
- W1859851758 cites W2090359466 @default.
- W1859851758 cites W2107559890 @default.
- W1859851758 cites W2114995628 @default.
- W1859851758 cites W2129539457 @default.
- W1859851758 cites W2137523622 @default.
- W1859851758 cites W2137933961 @default.
- W1859851758 cites W2163141504 @default.
- W1859851758 cites W2214822119 @default.
- W1859851758 cites W2313463225 @default.
- W1859851758 cites W2315562370 @default.
- W1859851758 cites W2952208651 @default.
- W1859851758 cites W2963564816 @default.
- W1859851758 doi "https://doi.org/10.48550/arxiv.1401.7356" @default.
- W1859851758 hasPublicationYear "2014" @default.
- W1859851758 type Work @default.
- W1859851758 sameAs 1859851758 @default.
- W1859851758 citedByCount "1" @default.
- W1859851758 countsByYear W18598517582014 @default.
- W1859851758 crossrefType "posted-content" @default.
- W1859851758 hasAuthorship W1859851758A5023624760 @default.
- W1859851758 hasAuthorship W1859851758A5090418403 @default.
- W1859851758 hasAuthorship W1859851758A5091861457 @default.
- W1859851758 hasBestOaLocation W18598517581 @default.
- W1859851758 hasConcept C114614502 @default.
- W1859851758 hasConcept C118712358 @default.
- W1859851758 hasConcept C136170076 @default.
- W1859851758 hasConcept C13888372 @default.
- W1859851758 hasConcept C178790620 @default.
- W1859851758 hasConcept C185592680 @default.
- W1859851758 hasConcept C24424167 @default.
- W1859851758 hasConcept C2781311116 @default.
- W1859851758 hasConcept C33923547 @default.
- W1859851758 hasConcept C75174853 @default.
- W1859851758 hasConcept C87945829 @default.
- W1859851758 hasConceptScore W1859851758C114614502 @default.
- W1859851758 hasConceptScore W1859851758C118712358 @default.
- W1859851758 hasConceptScore W1859851758C136170076 @default.
- W1859851758 hasConceptScore W1859851758C13888372 @default.
- W1859851758 hasConceptScore W1859851758C178790620 @default.
- W1859851758 hasConceptScore W1859851758C185592680 @default.
- W1859851758 hasConceptScore W1859851758C24424167 @default.
- W1859851758 hasConceptScore W1859851758C2781311116 @default.
- W1859851758 hasConceptScore W1859851758C33923547 @default.
- W1859851758 hasConceptScore W1859851758C75174853 @default.
- W1859851758 hasConceptScore W1859851758C87945829 @default.
- W1859851758 hasLocation W18598517581 @default.
- W1859851758 hasLocation W18598517582 @default.
- W1859851758 hasLocation W18598517583 @default.
- W1859851758 hasOpenAccess W1859851758 @default.
- W1859851758 hasPrimaryLocation W18598517581 @default.
- W1859851758 hasRelatedWork W1859851758 @default.
- W1859851758 hasRelatedWork W1999183530 @default.
- W1859851758 hasRelatedWork W2049678156 @default.
- W1859851758 hasRelatedWork W2075678634 @default.
- W1859851758 hasRelatedWork W2077496538 @default.
- W1859851758 hasRelatedWork W2089554393 @default.
- W1859851758 hasRelatedWork W2091529844 @default.
- W1859851758 hasRelatedWork W2952719894 @default.
- W1859851758 hasRelatedWork W2969081390 @default.
- W1859851758 hasRelatedWork W3171249079 @default.
- W1859851758 isParatext "false" @default.
- W1859851758 isRetracted "false" @default.
- W1859851758 magId "1859851758" @default.
- W1859851758 workType "article" @default.