Matches in SemOpenAlex for { <https://semopenalex.org/work/W1860294406> ?p ?o ?g. }
- W1860294406 abstract "AbstractWe show that, given a finitely generated group G as the coordinategroup of a finite system of equations over a torsion-free hyperbolic groupΓ, there is an algorithm which computes the Grushko decomposition ofeach maximal Γ-limit quotient of G, and then computes the primary JSJdecomposition of each freely indecomposable component. Therefore, wecan effectively find the JSJ decomposition of a freely indecomposable Γ-limit group given as the coordinate group of an irreducible system ofequations over Γ. Additionally, we show that a group is a Γ-limit groupif and only if it is an iterated generalized double over Γ. 1 Introduction Given a group G, another group Lis said to be fully residually G (or dis-criminated by G) if, given any finite subset A ⊂ L, 1 ∈/ A, there exists ahomomorphism φ: L→ G, such that φ(a) 6= 1 for all a∈ A. The study ofgroups discriminated by various classes of groups has been ongoing since theearly twentieth century, with increased activity often occuring as other equiv-alent characterizations of such groups, and applications in different fields, arefound. For example, the development of algebraic geometry over groups allowedfinitely generated groups discriminated by a free group Fto be considered as co-ordinate groups of irreducible systems of equations over F. This helped enablesolutions to Tarski’s problems on the elementary theory of free groups, givenindependently by Kharlampovich-Myasnikov and Sela ([24] and [35]).Throughout, we let Γ be an arbitrary fixed torsion-free hyperbolic group.While some of the theory of fully residually free groups can be generalizedeasily to groups discriminated by Γ, in general groups discriminated by Γ aremore difficult to work with for several reasons. Unlike finitely generated fullyresidually free groups, finitely generated fully residually Γ groups can containfinitely generated subgroups with no finite presentation, so algorithmic resultscan often be more difficult to obtain.In [12], Grigorchuk provided the following topological perspective of finitelygenerated fully residually Ggroups, which also has the benefit of providing1" @default.
- W1860294406 created "2016-06-24" @default.
- W1860294406 creator A5016991948 @default.
- W1860294406 creator A5031217572 @default.
- W1860294406 creator A5039441575 @default.
- W1860294406 date "2015-01-13" @default.
- W1860294406 modified "2023-09-22" @default.
- W1860294406 title "Effective JSJ decompositions of maximal -limit quotients" @default.
- W1860294406 cites W141907986 @default.
- W1860294406 cites W1497320056 @default.
- W1860294406 cites W1512417108 @default.
- W1860294406 cites W1516116134 @default.
- W1860294406 cites W1537656303 @default.
- W1860294406 cites W1538946872 @default.
- W1860294406 cites W1680476786 @default.
- W1860294406 cites W1967759674 @default.
- W1860294406 cites W1986883817 @default.
- W1860294406 cites W1994502794 @default.
- W1860294406 cites W2005047182 @default.
- W1860294406 cites W2018604239 @default.
- W1860294406 cites W2040480652 @default.
- W1860294406 cites W2047471831 @default.
- W1860294406 cites W2057330802 @default.
- W1860294406 cites W2061741468 @default.
- W1860294406 cites W2068638265 @default.
- W1860294406 cites W2071641006 @default.
- W1860294406 cites W2072974047 @default.
- W1860294406 cites W2081925316 @default.
- W1860294406 cites W2095998246 @default.
- W1860294406 cites W2136209605 @default.
- W1860294406 cites W2138549733 @default.
- W1860294406 cites W2158684550 @default.
- W1860294406 cites W2170795738 @default.
- W1860294406 cites W2889336407 @default.
- W1860294406 cites W2945209112 @default.
- W1860294406 cites W2962704050 @default.
- W1860294406 cites W2963196760 @default.
- W1860294406 hasPublicationYear "2015" @default.
- W1860294406 type Work @default.
- W1860294406 sameAs 1860294406 @default.
- W1860294406 citedByCount "0" @default.
- W1860294406 crossrefType "posted-content" @default.
- W1860294406 hasAuthorship W1860294406A5016991948 @default.
- W1860294406 hasAuthorship W1860294406A5031217572 @default.
- W1860294406 hasAuthorship W1860294406A5039441575 @default.
- W1860294406 hasConcept C105515060 @default.
- W1860294406 hasConcept C114614502 @default.
- W1860294406 hasConcept C134306372 @default.
- W1860294406 hasConcept C141071460 @default.
- W1860294406 hasConcept C151201525 @default.
- W1860294406 hasConcept C157480366 @default.
- W1860294406 hasConcept C178790620 @default.
- W1860294406 hasConcept C185592680 @default.
- W1860294406 hasConcept C199422724 @default.
- W1860294406 hasConcept C202444582 @default.
- W1860294406 hasConcept C2781311116 @default.
- W1860294406 hasConcept C33923547 @default.
- W1860294406 hasConcept C71924100 @default.
- W1860294406 hasConcept C77461463 @default.
- W1860294406 hasConcept C9376300 @default.
- W1860294406 hasConceptScore W1860294406C105515060 @default.
- W1860294406 hasConceptScore W1860294406C114614502 @default.
- W1860294406 hasConceptScore W1860294406C134306372 @default.
- W1860294406 hasConceptScore W1860294406C141071460 @default.
- W1860294406 hasConceptScore W1860294406C151201525 @default.
- W1860294406 hasConceptScore W1860294406C157480366 @default.
- W1860294406 hasConceptScore W1860294406C178790620 @default.
- W1860294406 hasConceptScore W1860294406C185592680 @default.
- W1860294406 hasConceptScore W1860294406C199422724 @default.
- W1860294406 hasConceptScore W1860294406C202444582 @default.
- W1860294406 hasConceptScore W1860294406C2781311116 @default.
- W1860294406 hasConceptScore W1860294406C33923547 @default.
- W1860294406 hasConceptScore W1860294406C71924100 @default.
- W1860294406 hasConceptScore W1860294406C77461463 @default.
- W1860294406 hasConceptScore W1860294406C9376300 @default.
- W1860294406 hasLocation W18602944061 @default.
- W1860294406 hasOpenAccess W1860294406 @default.
- W1860294406 hasPrimaryLocation W18602944061 @default.
- W1860294406 hasRelatedWork W141907986 @default.
- W1860294406 hasRelatedWork W1566710987 @default.
- W1860294406 hasRelatedWork W1619497273 @default.
- W1860294406 hasRelatedWork W1638979847 @default.
- W1860294406 hasRelatedWork W1996507494 @default.
- W1860294406 hasRelatedWork W2036227427 @default.
- W1860294406 hasRelatedWork W2059683613 @default.
- W1860294406 hasRelatedWork W2082461163 @default.
- W1860294406 hasRelatedWork W2098962349 @default.
- W1860294406 hasRelatedWork W2111585932 @default.
- W1860294406 hasRelatedWork W2120047595 @default.
- W1860294406 hasRelatedWork W2127587999 @default.
- W1860294406 hasRelatedWork W2802023461 @default.
- W1860294406 hasRelatedWork W2952713252 @default.
- W1860294406 hasRelatedWork W2968468472 @default.
- W1860294406 hasRelatedWork W2996269342 @default.
- W1860294406 hasRelatedWork W3093652991 @default.
- W1860294406 hasRelatedWork W3101099007 @default.
- W1860294406 hasRelatedWork W3099166653 @default.
- W1860294406 isParatext "false" @default.
- W1860294406 isRetracted "false" @default.
- W1860294406 magId "1860294406" @default.