Matches in SemOpenAlex for { <https://semopenalex.org/work/W1861454313> ?p ?o ?g. }
- W1861454313 endingPage "12195" @default.
- W1861454313 startingPage "12171" @default.
- W1861454313 abstract "PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi’an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO2, and NO2, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors’ variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas." @default.
- W1861454313 created "2016-06-24" @default.
- W1861454313 creator A5021334553 @default.
- W1861454313 creator A5028148900 @default.
- W1861454313 creator A5052490489 @default.
- W1861454313 creator A5056164015 @default.
- W1861454313 creator A5064488623 @default.
- W1861454313 creator A5086541594 @default.
- W1861454313 creator A5091177776 @default.
- W1861454313 date "2015-09-29" @default.
- W1861454313 modified "2023-09-27" @default.
- W1861454313 title "Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS" @default.
- W1861454313 cites W1538856322 @default.
- W1861454313 cites W1951222621 @default.
- W1861454313 cites W1965720796 @default.
- W1861454313 cites W1967185012 @default.
- W1861454313 cites W1970300332 @default.
- W1861454313 cites W1971102152 @default.
- W1861454313 cites W1973199293 @default.
- W1861454313 cites W1974518057 @default.
- W1861454313 cites W1976593791 @default.
- W1861454313 cites W1976832370 @default.
- W1861454313 cites W1978774867 @default.
- W1861454313 cites W1980016057 @default.
- W1861454313 cites W1985872607 @default.
- W1861454313 cites W1991323954 @default.
- W1861454313 cites W1992978542 @default.
- W1861454313 cites W2002410308 @default.
- W1861454313 cites W2010405011 @default.
- W1861454313 cites W2012272234 @default.
- W1861454313 cites W2016199013 @default.
- W1861454313 cites W2020975304 @default.
- W1861454313 cites W2021409406 @default.
- W1861454313 cites W2024894548 @default.
- W1861454313 cites W2036607365 @default.
- W1861454313 cites W2040893088 @default.
- W1861454313 cites W2045800824 @default.
- W1861454313 cites W2046364576 @default.
- W1861454313 cites W2053323500 @default.
- W1861454313 cites W2062326675 @default.
- W1861454313 cites W2065844779 @default.
- W1861454313 cites W2076555263 @default.
- W1861454313 cites W2081330357 @default.
- W1861454313 cites W2089202914 @default.
- W1861454313 cites W2093273670 @default.
- W1861454313 cites W2095327345 @default.
- W1861454313 cites W2098294355 @default.
- W1861454313 cites W2103893521 @default.
- W1861454313 cites W2113913953 @default.
- W1861454313 cites W2115513183 @default.
- W1861454313 cites W2125848133 @default.
- W1861454313 cites W2128727570 @default.
- W1861454313 cites W2129564247 @default.
- W1861454313 cites W2131934258 @default.
- W1861454313 cites W2134265359 @default.
- W1861454313 cites W2140974747 @default.
- W1861454313 cites W2149422514 @default.
- W1861454313 cites W2155987210 @default.
- W1861454313 cites W2161044029 @default.
- W1861454313 cites W2333201240 @default.
- W1861454313 cites W276808286 @default.
- W1861454313 cites W4243999944 @default.
- W1861454313 cites W4375906041 @default.
- W1861454313 cites W750822373 @default.
- W1861454313 doi "https://doi.org/10.3390/ijerph121012171" @default.
- W1861454313 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4626962" @default.
- W1861454313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26426030" @default.
- W1861454313 hasPublicationYear "2015" @default.
- W1861454313 type Work @default.
- W1861454313 sameAs 1861454313 @default.
- W1861454313 citedByCount "14" @default.
- W1861454313 countsByYear W18614543132016 @default.
- W1861454313 countsByYear W18614543132018 @default.
- W1861454313 countsByYear W18614543132019 @default.
- W1861454313 countsByYear W18614543132020 @default.
- W1861454313 countsByYear W18614543132021 @default.
- W1861454313 countsByYear W18614543132022 @default.
- W1861454313 countsByYear W18614543132023 @default.
- W1861454313 crossrefType "journal-article" @default.
- W1861454313 hasAuthorship W1861454313A5021334553 @default.
- W1861454313 hasAuthorship W1861454313A5028148900 @default.
- W1861454313 hasAuthorship W1861454313A5052490489 @default.
- W1861454313 hasAuthorship W1861454313A5056164015 @default.
- W1861454313 hasAuthorship W1861454313A5064488623 @default.
- W1861454313 hasAuthorship W1861454313A5086541594 @default.
- W1861454313 hasAuthorship W1861454313A5091177776 @default.
- W1861454313 hasBestOaLocation W18614543131 @default.
- W1861454313 hasConcept C105795698 @default.
- W1861454313 hasConcept C11413529 @default.
- W1861454313 hasConcept C119857082 @default.
- W1861454313 hasConcept C127313418 @default.
- W1861454313 hasConcept C139945424 @default.
- W1861454313 hasConcept C18903297 @default.
- W1861454313 hasConcept C198408306 @default.
- W1861454313 hasConcept C27438332 @default.
- W1861454313 hasConcept C2908647359 @default.
- W1861454313 hasConcept C33923547 @default.
- W1861454313 hasConcept C39432304 @default.