Matches in SemOpenAlex for { <https://semopenalex.org/work/W1861707035> ?p ?o ?g. }
- W1861707035 abstract "Breast cancer belongs to the most frequent and severe cancer types in human. Since excretion of modified nucleosides from increased RNA metabolism has been proposed as a potential target in pathogenesis of breast cancer, the aim of the present study was to elucidate the predictability of breast cancer by means of urinary excreted nucleosides.We analyzed urine samples from 85 breast cancer women and respective healthy controls to assess the metabolic profiles of nucleosides by a comprehensive bioinformatic approach. All included nucleosides/ribosylated metabolites were isolated by cis-diol specific affinity chromatography and measured with liquid chromatography ion trap mass spectrometry (LC-ITMS). A valid set of urinary metabolites was selected by exclusion of all candidates with poor linearity and/or reproducibility in the analytical setting. The bioinformatic tool of Oscillating Search Algorithm for Feature Selection (OSAF) was applied to iteratively improve features for training of Support Vector Machines (SVM) to better predict breast cancer.After identification of 51 nucleosides/ribosylated metabolites in the urine of breast cancer women and/or controls by LC- ITMS coupling, a valid set of 35 candidates was selected for subsequent computational analyses. OSAF resulted in 44 pairwise ratios of metabolite features by iterative optimization. Based on this approach ultimately estimates for sensitivity and specificity of 83.5% and 90.6% were obtained for best prediction of breast cancer. The classification performance was dominated by metabolite pairs with SAH which highlights its importance for RNA methylation in cancer pathogenesis.Extensive RNA-pathway analysis based on mass spectrometric analysis of metabolites and subsequent bioinformatic feature selection allowed for the identification of significant metabolic features related to breast cancer pathogenesis. The combination of mass spectrometric analysis and subsequent SVM-based feature selection represents a promising tool for the development of a non-invasive prediction system." @default.
- W1861707035 created "2016-06-24" @default.
- W1861707035 creator A5004958444 @default.
- W1861707035 creator A5011069826 @default.
- W1861707035 creator A5031324853 @default.
- W1861707035 creator A5040233864 @default.
- W1861707035 creator A5052254983 @default.
- W1861707035 creator A5052292682 @default.
- W1861707035 creator A5057183308 @default.
- W1861707035 creator A5073326709 @default.
- W1861707035 creator A5079300942 @default.
- W1861707035 creator A5085216173 @default.
- W1861707035 creator A5088445750 @default.
- W1861707035 date "2009-04-05" @default.
- W1861707035 modified "2023-10-09" @default.
- W1861707035 title "Prediction of breast cancer by profiling of urinary RNA metabolites using Support Vector Machine-based feature selection" @default.
- W1861707035 cites W1488195106 @default.
- W1861707035 cites W1507577408 @default.
- W1861707035 cites W1968768126 @default.
- W1861707035 cites W1979323152 @default.
- W1861707035 cites W1979509252 @default.
- W1861707035 cites W1979785286 @default.
- W1861707035 cites W1980601429 @default.
- W1861707035 cites W1986337746 @default.
- W1861707035 cites W1991941799 @default.
- W1861707035 cites W2000718436 @default.
- W1861707035 cites W2001660226 @default.
- W1861707035 cites W2016097192 @default.
- W1861707035 cites W2030956822 @default.
- W1861707035 cites W2035874433 @default.
- W1861707035 cites W2037625634 @default.
- W1861707035 cites W2045201098 @default.
- W1861707035 cites W2059217091 @default.
- W1861707035 cites W2062547152 @default.
- W1861707035 cites W2067530388 @default.
- W1861707035 cites W2069831443 @default.
- W1861707035 cites W2083742797 @default.
- W1861707035 cites W2107622595 @default.
- W1861707035 cites W2107835995 @default.
- W1861707035 cites W2143497460 @default.
- W1861707035 cites W2147240679 @default.
- W1861707035 cites W2162227572 @default.
- W1861707035 cites W2167674154 @default.
- W1861707035 cites W4211166883 @default.
- W1861707035 cites W768735852 @default.
- W1861707035 doi "https://doi.org/10.1186/1471-2407-9-104" @default.
- W1861707035 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2680413" @default.
- W1861707035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19344524" @default.
- W1861707035 hasPublicationYear "2009" @default.
- W1861707035 type Work @default.
- W1861707035 sameAs 1861707035 @default.
- W1861707035 citedByCount "65" @default.
- W1861707035 countsByYear W18617070352012 @default.
- W1861707035 countsByYear W18617070352013 @default.
- W1861707035 countsByYear W18617070352014 @default.
- W1861707035 countsByYear W18617070352015 @default.
- W1861707035 countsByYear W18617070352016 @default.
- W1861707035 countsByYear W18617070352017 @default.
- W1861707035 countsByYear W18617070352018 @default.
- W1861707035 countsByYear W18617070352019 @default.
- W1861707035 countsByYear W18617070352020 @default.
- W1861707035 countsByYear W18617070352021 @default.
- W1861707035 countsByYear W18617070352022 @default.
- W1861707035 countsByYear W18617070352023 @default.
- W1861707035 crossrefType "journal-article" @default.
- W1861707035 hasAuthorship W1861707035A5004958444 @default.
- W1861707035 hasAuthorship W1861707035A5011069826 @default.
- W1861707035 hasAuthorship W1861707035A5031324853 @default.
- W1861707035 hasAuthorship W1861707035A5040233864 @default.
- W1861707035 hasAuthorship W1861707035A5052254983 @default.
- W1861707035 hasAuthorship W1861707035A5052292682 @default.
- W1861707035 hasAuthorship W1861707035A5057183308 @default.
- W1861707035 hasAuthorship W1861707035A5073326709 @default.
- W1861707035 hasAuthorship W1861707035A5079300942 @default.
- W1861707035 hasAuthorship W1861707035A5085216173 @default.
- W1861707035 hasAuthorship W1861707035A5088445750 @default.
- W1861707035 hasBestOaLocation W18617070351 @default.
- W1861707035 hasConcept C121608353 @default.
- W1861707035 hasConcept C126322002 @default.
- W1861707035 hasConcept C135870905 @default.
- W1861707035 hasConcept C143998085 @default.
- W1861707035 hasConcept C21565614 @default.
- W1861707035 hasConcept C2777477808 @default.
- W1861707035 hasConcept C2780026642 @default.
- W1861707035 hasConcept C530470458 @default.
- W1861707035 hasConcept C60644358 @default.
- W1861707035 hasConcept C70721500 @default.
- W1861707035 hasConcept C71924100 @default.
- W1861707035 hasConcept C77411442 @default.
- W1861707035 hasConcept C86803240 @default.
- W1861707035 hasConceptScore W1861707035C121608353 @default.
- W1861707035 hasConceptScore W1861707035C126322002 @default.
- W1861707035 hasConceptScore W1861707035C135870905 @default.
- W1861707035 hasConceptScore W1861707035C143998085 @default.
- W1861707035 hasConceptScore W1861707035C21565614 @default.
- W1861707035 hasConceptScore W1861707035C2777477808 @default.
- W1861707035 hasConceptScore W1861707035C2780026642 @default.
- W1861707035 hasConceptScore W1861707035C530470458 @default.
- W1861707035 hasConceptScore W1861707035C60644358 @default.
- W1861707035 hasConceptScore W1861707035C70721500 @default.