Matches in SemOpenAlex for { <https://semopenalex.org/work/W1864468960> ?p ?o ?g. }
- W1864468960 endingPage "152" @default.
- W1864468960 startingPage "137" @default.
- W1864468960 abstract "Summary A number of hydrological studies have proven the superior prediction performance of hybrid models coupled with data preprocessing techniques. However, many studies first decompose the entire data series into components and later divide each component into calibration and validation datasets to establish models, which sends some amount of future information into the decomposition and reconstruction processes. As a consequence, the resulting components used to forecast the value of a particular moment are computed using information from future values, which are not available at that particular moment in a forecasting exercise. Since most papers don’t present their model framework in detail, it is difficult to identify whether they are performing a real forecast or not. Even though several other papers have explicitly stated which experiment they are performing, a comparison between results in the hindcast and forecast experiments is still missing. Therefore, it is necessary to investigate and compare the performance of these hybrid models in the two experiments in order to estimate whether they are suitable for real forecasting. With the combination of three preprocessing techniques, such as wavelet analysis (WA), empirical mode decomposition (EMD) and singular spectrum analysis (SSA), and two modeling methods (i.e. ANN model and ARMA model), six hybrid models are developed in this study, including WA-ANN, WA-ARMA, EMD-ANN, EMD-ARMA, SSA-ANN and SSA-ARMA. Preprocessing techniques are used to decompose the data series into sub-series, and then these sub-series are modeled using ANN and ARMA models. These models are examined in hindcasting and forecasting of the monthly streamflow of two sites in the Yangtze River of China. The results of this study indicate that the six hybrid models perform better in the hindcast experiment compared with the original ANN and ARMA models, while the hybrid models in the forecast experiment perform worse than the original models and the performances of WA-based and EMD-based models vary largely across different extension methods. It can be concluded that the hybrid models are not suitable for monthly streamflow forecasting in this study. New extension methods and modified preprocessing techniques can improve the prediction performance of these hybrid models in forecast experiments." @default.
- W1864468960 created "2016-06-24" @default.
- W1864468960 creator A5007078628 @default.
- W1864468960 creator A5070556230 @default.
- W1864468960 creator A5071795590 @default.
- W1864468960 creator A5088141052 @default.
- W1864468960 date "2015-11-01" @default.
- W1864468960 modified "2023-10-17" @default.
- W1864468960 title "Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences" @default.
- W1864468960 cites W1965689554 @default.
- W1864468960 cites W1965737908 @default.
- W1864468960 cites W1969848370 @default.
- W1864468960 cites W1978885307 @default.
- W1864468960 cites W1990474898 @default.
- W1864468960 cites W2006232035 @default.
- W1864468960 cites W2007221293 @default.
- W1864468960 cites W2012340228 @default.
- W1864468960 cites W2015964844 @default.
- W1864468960 cites W2018767964 @default.
- W1864468960 cites W2020618019 @default.
- W1864468960 cites W2021866685 @default.
- W1864468960 cites W2022754289 @default.
- W1864468960 cites W2033185628 @default.
- W1864468960 cites W2038097457 @default.
- W1864468960 cites W2042985051 @default.
- W1864468960 cites W2044781495 @default.
- W1864468960 cites W2052851219 @default.
- W1864468960 cites W2062087947 @default.
- W1864468960 cites W2077831453 @default.
- W1864468960 cites W2079259321 @default.
- W1864468960 cites W2082327374 @default.
- W1864468960 cites W2088123298 @default.
- W1864468960 cites W2089016853 @default.
- W1864468960 cites W2090568397 @default.
- W1864468960 cites W2098399767 @default.
- W1864468960 cites W2132984323 @default.
- W1864468960 cites W2154250668 @default.
- W1864468960 cites W2163442179 @default.
- W1864468960 cites W2269853658 @default.
- W1864468960 cites W3017323153 @default.
- W1864468960 doi "https://doi.org/10.1016/j.jhydrol.2015.09.047" @default.
- W1864468960 hasPublicationYear "2015" @default.
- W1864468960 type Work @default.
- W1864468960 sameAs 1864468960 @default.
- W1864468960 citedByCount "117" @default.
- W1864468960 countsByYear W18644689602016 @default.
- W1864468960 countsByYear W18644689602017 @default.
- W1864468960 countsByYear W18644689602018 @default.
- W1864468960 countsByYear W18644689602019 @default.
- W1864468960 countsByYear W18644689602020 @default.
- W1864468960 countsByYear W18644689602021 @default.
- W1864468960 countsByYear W18644689602022 @default.
- W1864468960 countsByYear W18644689602023 @default.
- W1864468960 crossrefType "journal-article" @default.
- W1864468960 hasAuthorship W1864468960A5007078628 @default.
- W1864468960 hasAuthorship W1864468960A5070556230 @default.
- W1864468960 hasAuthorship W1864468960A5071795590 @default.
- W1864468960 hasAuthorship W1864468960A5088141052 @default.
- W1864468960 hasConcept C10551718 @default.
- W1864468960 hasConcept C124101348 @default.
- W1864468960 hasConcept C126645576 @default.
- W1864468960 hasConcept C127313418 @default.
- W1864468960 hasConcept C153294291 @default.
- W1864468960 hasConcept C154945302 @default.
- W1864468960 hasConcept C183195422 @default.
- W1864468960 hasConcept C205649164 @default.
- W1864468960 hasConcept C34736171 @default.
- W1864468960 hasConcept C39432304 @default.
- W1864468960 hasConcept C41008148 @default.
- W1864468960 hasConcept C49204034 @default.
- W1864468960 hasConcept C53739315 @default.
- W1864468960 hasConcept C58640448 @default.
- W1864468960 hasConceptScore W1864468960C10551718 @default.
- W1864468960 hasConceptScore W1864468960C124101348 @default.
- W1864468960 hasConceptScore W1864468960C126645576 @default.
- W1864468960 hasConceptScore W1864468960C127313418 @default.
- W1864468960 hasConceptScore W1864468960C153294291 @default.
- W1864468960 hasConceptScore W1864468960C154945302 @default.
- W1864468960 hasConceptScore W1864468960C183195422 @default.
- W1864468960 hasConceptScore W1864468960C205649164 @default.
- W1864468960 hasConceptScore W1864468960C34736171 @default.
- W1864468960 hasConceptScore W1864468960C39432304 @default.
- W1864468960 hasConceptScore W1864468960C41008148 @default.
- W1864468960 hasConceptScore W1864468960C49204034 @default.
- W1864468960 hasConceptScore W1864468960C53739315 @default.
- W1864468960 hasConceptScore W1864468960C58640448 @default.
- W1864468960 hasFunder F4320321001 @default.
- W1864468960 hasLocation W18644689601 @default.
- W1864468960 hasOpenAccess W1864468960 @default.
- W1864468960 hasPrimaryLocation W18644689601 @default.
- W1864468960 hasRelatedWork W102552829 @default.
- W1864468960 hasRelatedWork W2147030707 @default.
- W1864468960 hasRelatedWork W2360717114 @default.
- W1864468960 hasRelatedWork W2367545121 @default.
- W1864468960 hasRelatedWork W2373749036 @default.
- W1864468960 hasRelatedWork W2382928216 @default.
- W1864468960 hasRelatedWork W2947585550 @default.
- W1864468960 hasRelatedWork W2952736244 @default.