Matches in SemOpenAlex for { <https://semopenalex.org/work/W1864897103> ?p ?o ?g. }
- W1864897103 abstract "This dissertation examines the scaling of large scale assessments containing both dichotomous and polytomous items, mixed format assessments. Because large scale assessments are generally built to measure one construct, e.g. eighth grade mathematics, unidimensional data was generated to simulate a mixed format assessment. The test length, number of polytomous to dichotomous items per assessment and the discrimination level between dichotomous and polytomous items were varied in this study. There were five item combinations and two level of discrimination defined. The goal of this dissertation was to compare the fit of the generated data to three different Item Response Theory models; one unidimensional and two multidimensional. The first model used to fit the data was the same model type used to generate the data; a 3PL IRT model in combination with the Generalized Partial Credit model. The second model was the Hierarchical MIRT Model. The final model was the bifactor model. The research questions examined in this study were; (1) Which of the models achieves the best model fit across simulation conditions?, and (2) Do the variables of item combination or discrimination affect the model fit? The study showed that the bi-factor model fit unidimensional data, in mixed format, better than either the unidimensional or the hierarchical MIRT models. The criterion used to make this determination was the Bayesian convergence criterions; BIC, DIC and AIC. Overall, the bi-factor model fit the unidimensional mixed format data better than the generating model fit the data. The hierarchical MIRT model did not fit the data very well, and in a few cases, did not converge. The more polytomous item included on the assessment the better the bi-factor model improved overall fit over the unidimensional model. This result suggests that noise in the data from mixed format assessments can cause the unidimensional models to fail to fail to fit the data. This study illustrates the format alone can create the appearance of dimensionality. However since the data was generated as unidimensional, this format dimensionality affect was an attribute of the data alone, not of items or examinees interactions with the items. Mixed format assessments create an artifact in the data that causes the data to factor into dimensions that are not actually present. It appears there is noise in the data of mixed format assessment that needs to accounted for when scaling." @default.
- W1864897103 created "2016-06-24" @default.
- W1864897103 creator A5042057287 @default.
- W1864897103 date "2014-12-31" @default.
- W1864897103 modified "2023-09-27" @default.
- W1864897103 title "Unidimensional Models Do Not Fit Unidimensional Mixed Format Data Better than Multidimensional Models" @default.
- W1864897103 cites W1505158336 @default.
- W1864897103 cites W1536497620 @default.
- W1864897103 cites W1600310449 @default.
- W1864897103 cites W1896742105 @default.
- W1864897103 cites W1965073180 @default.
- W1864897103 cites W1966459106 @default.
- W1864897103 cites W1966576448 @default.
- W1864897103 cites W1984112996 @default.
- W1864897103 cites W1987421155 @default.
- W1864897103 cites W1988686569 @default.
- W1864897103 cites W1989148610 @default.
- W1864897103 cites W2016307448 @default.
- W1864897103 cites W2018466385 @default.
- W1864897103 cites W2032334850 @default.
- W1864897103 cites W2040455338 @default.
- W1864897103 cites W2041638702 @default.
- W1864897103 cites W2055682091 @default.
- W1864897103 cites W2057765075 @default.
- W1864897103 cites W2058429085 @default.
- W1864897103 cites W2067155400 @default.
- W1864897103 cites W2088832685 @default.
- W1864897103 cites W2090448196 @default.
- W1864897103 cites W2094264376 @default.
- W1864897103 cites W2098536470 @default.
- W1864897103 cites W2102386709 @default.
- W1864897103 cites W2109433212 @default.
- W1864897103 cites W2117809953 @default.
- W1864897103 cites W2119159447 @default.
- W1864897103 cites W2142635246 @default.
- W1864897103 cites W2144871228 @default.
- W1864897103 cites W2158137369 @default.
- W1864897103 cites W2160900637 @default.
- W1864897103 cites W2161909525 @default.
- W1864897103 cites W2168175751 @default.
- W1864897103 cites W2313220223 @default.
- W1864897103 cites W2495364486 @default.
- W1864897103 cites W3046610667 @default.
- W1864897103 cites W615644768 @default.
- W1864897103 cites W73971094 @default.
- W1864897103 cites W2144246398 @default.
- W1864897103 hasPublicationYear "2014" @default.
- W1864897103 type Work @default.
- W1864897103 sameAs 1864897103 @default.
- W1864897103 citedByCount "0" @default.
- W1864897103 crossrefType "dissertation" @default.
- W1864897103 hasAuthorship W1864897103A5042057287 @default.
- W1864897103 hasConcept C105795698 @default.
- W1864897103 hasConcept C107673813 @default.
- W1864897103 hasConcept C114289077 @default.
- W1864897103 hasConcept C121332964 @default.
- W1864897103 hasConcept C124101348 @default.
- W1864897103 hasConcept C144986985 @default.
- W1864897103 hasConcept C149782125 @default.
- W1864897103 hasConcept C16012445 @default.
- W1864897103 hasConcept C171606756 @default.
- W1864897103 hasConcept C19875794 @default.
- W1864897103 hasConcept C207968926 @default.
- W1864897103 hasConcept C2778755073 @default.
- W1864897103 hasConcept C33923547 @default.
- W1864897103 hasConcept C41008148 @default.
- W1864897103 hasConcept C53059260 @default.
- W1864897103 hasConcept C62520636 @default.
- W1864897103 hasConceptScore W1864897103C105795698 @default.
- W1864897103 hasConceptScore W1864897103C107673813 @default.
- W1864897103 hasConceptScore W1864897103C114289077 @default.
- W1864897103 hasConceptScore W1864897103C121332964 @default.
- W1864897103 hasConceptScore W1864897103C124101348 @default.
- W1864897103 hasConceptScore W1864897103C144986985 @default.
- W1864897103 hasConceptScore W1864897103C149782125 @default.
- W1864897103 hasConceptScore W1864897103C16012445 @default.
- W1864897103 hasConceptScore W1864897103C171606756 @default.
- W1864897103 hasConceptScore W1864897103C19875794 @default.
- W1864897103 hasConceptScore W1864897103C207968926 @default.
- W1864897103 hasConceptScore W1864897103C2778755073 @default.
- W1864897103 hasConceptScore W1864897103C33923547 @default.
- W1864897103 hasConceptScore W1864897103C41008148 @default.
- W1864897103 hasConceptScore W1864897103C53059260 @default.
- W1864897103 hasConceptScore W1864897103C62520636 @default.
- W1864897103 hasLocation W18648971031 @default.
- W1864897103 hasOpenAccess W1864897103 @default.
- W1864897103 hasPrimaryLocation W18648971031 @default.
- W1864897103 hasRelatedWork W111380745 @default.
- W1864897103 hasRelatedWork W149410319 @default.
- W1864897103 hasRelatedWork W158842721 @default.
- W1864897103 hasRelatedWork W167551105 @default.
- W1864897103 hasRelatedWork W1964737373 @default.
- W1864897103 hasRelatedWork W2033636223 @default.
- W1864897103 hasRelatedWork W2049376076 @default.
- W1864897103 hasRelatedWork W2063575809 @default.
- W1864897103 hasRelatedWork W2105317523 @default.
- W1864897103 hasRelatedWork W2290076777 @default.
- W1864897103 hasRelatedWork W2463025035 @default.
- W1864897103 hasRelatedWork W2781180134 @default.
- W1864897103 hasRelatedWork W2923484019 @default.