Matches in SemOpenAlex for { <https://semopenalex.org/work/W1866709725> ?p ?o ?g. }
- W1866709725 endingPage "490" @default.
- W1866709725 startingPage "427" @default.
- W1866709725 abstract "The Korteweg-de Vries equation was first derived by Boussinesq and Korteweg and de Vries as a model for long-crested small-amplitude long waves propagating on the surface of water. The same partial differential equation has since arisen as a model for unidirectional propagation of waves in a variety of physical systems. In mathematical studies, consideration has been given principally to pure initial-value problems where the wave profile is imagined to be determined everywhere at a given instant of time and the corresponding solution models the further wave motion. The practical, quantitative use of the Korteweg-de Vries equation and its relatives does not always involve the pure initial-value problem. Instead, initial-boundary-value problems often come to the fore. A natural example arises when modeling the effect in a channel of a wave maker mounted at one end, or in modeling near-shore zone motions generated by waves propagating from deep water. Indeed, the initial-boundary-value problem [ (0.1)qquad qquad quad left { begin {array}{l} eta _t+eta _x+eta eta _x +eta _{xxx} =0 , quad mbox {for} x, t geq 0, cr cr eta (x,0) = phi (x),qquad quad eta (0,t) =h(t),end {array}right . qquad qquad qquad quad ] studied here arises naturally as a model whenever waves determined at an entry point propagate into a patch of a medium for which disturbances are governed approximately by the Korteweg-de Vries equation. The present essay improves upon earlier work on (0.1) by making use of modern methods for the study of nonlinear dispersive wave equations. Speaking technically, local well-posedness is obtained for initial data $phi$ in the class $H^s(R^+)$ for $s>frac 34$ and boundary data $h$ in $H^{(1+s)/3}_{loc} (R^+)$, whereas global well-posedness is shown to hold for $phi in H^s (R^+) , hin H^{frac {7+3s}{12}}_{loc} (R^+)$ when $1leq sleq 3$, and for $phi in H^s(R^+) , hin H^{(s+1)/3}_{loc} (R^+)$ when $sgeq 3$. In addition, it is shown that the correspondence that associates to initial data $phi$ and boundary data $h$ the unique solution $u$ of (0.1) is analytic. This implies, for example, that solutions may be approximated arbitrarily well by solving a finite number of linear problems." @default.
- W1866709725 created "2016-06-24" @default.
- W1866709725 creator A5028034912 @default.
- W1866709725 creator A5059409198 @default.
- W1866709725 creator A5070549966 @default.
- W1866709725 date "2001-09-26" @default.
- W1866709725 modified "2023-10-14" @default.
- W1866709725 title "A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane" @default.
- W1866709725 cites W1485428625 @default.
- W1866709725 cites W1559907478 @default.
- W1866709725 cites W1584239381 @default.
- W1866709725 cites W1597209545 @default.
- W1866709725 cites W1597478324 @default.
- W1866709725 cites W1957427711 @default.
- W1866709725 cites W1971883113 @default.
- W1866709725 cites W1977278235 @default.
- W1866709725 cites W1977609124 @default.
- W1866709725 cites W1978662909 @default.
- W1866709725 cites W1979364767 @default.
- W1866709725 cites W1985182018 @default.
- W1866709725 cites W1989182266 @default.
- W1866709725 cites W1992964691 @default.
- W1866709725 cites W1994459523 @default.
- W1866709725 cites W1999843133 @default.
- W1866709725 cites W2005380085 @default.
- W1866709725 cites W2005979956 @default.
- W1866709725 cites W2006417376 @default.
- W1866709725 cites W2012324026 @default.
- W1866709725 cites W2016003265 @default.
- W1866709725 cites W2021270874 @default.
- W1866709725 cites W2023174645 @default.
- W1866709725 cites W2028850680 @default.
- W1866709725 cites W2033104118 @default.
- W1866709725 cites W2040883224 @default.
- W1866709725 cites W2042609702 @default.
- W1866709725 cites W2043220622 @default.
- W1866709725 cites W2044629177 @default.
- W1866709725 cites W2046933061 @default.
- W1866709725 cites W2053584243 @default.
- W1866709725 cites W2069295826 @default.
- W1866709725 cites W2069829822 @default.
- W1866709725 cites W2071742362 @default.
- W1866709725 cites W2076251138 @default.
- W1866709725 cites W2076517613 @default.
- W1866709725 cites W2086673715 @default.
- W1866709725 cites W2087383518 @default.
- W1866709725 cites W2091947763 @default.
- W1866709725 cites W2097997105 @default.
- W1866709725 cites W2107837450 @default.
- W1866709725 cites W2108092007 @default.
- W1866709725 cites W2135611868 @default.
- W1866709725 cites W2161194605 @default.
- W1866709725 cites W2161414171 @default.
- W1866709725 cites W2170434801 @default.
- W1866709725 cites W2183692121 @default.
- W1866709725 cites W2232171447 @default.
- W1866709725 cites W2244503847 @default.
- W1866709725 cites W2245529475 @default.
- W1866709725 cites W2280297536 @default.
- W1866709725 cites W3017696839 @default.
- W1866709725 cites W3038830718 @default.
- W1866709725 cites W653486459 @default.
- W1866709725 cites W2302541945 @default.
- W1866709725 doi "https://doi.org/10.1090/s0002-9947-01-02885-9" @default.
- W1866709725 hasPublicationYear "2001" @default.
- W1866709725 type Work @default.
- W1866709725 sameAs 1866709725 @default.
- W1866709725 citedByCount "146" @default.
- W1866709725 countsByYear W18667097252012 @default.
- W1866709725 countsByYear W18667097252013 @default.
- W1866709725 countsByYear W18667097252014 @default.
- W1866709725 countsByYear W18667097252015 @default.
- W1866709725 countsByYear W18667097252016 @default.
- W1866709725 countsByYear W18667097252017 @default.
- W1866709725 countsByYear W18667097252018 @default.
- W1866709725 countsByYear W18667097252019 @default.
- W1866709725 countsByYear W18667097252020 @default.
- W1866709725 countsByYear W18667097252021 @default.
- W1866709725 countsByYear W18667097252022 @default.
- W1866709725 countsByYear W18667097252023 @default.
- W1866709725 crossrefType "journal-article" @default.
- W1866709725 hasAuthorship W1866709725A5028034912 @default.
- W1866709725 hasAuthorship W1866709725A5059409198 @default.
- W1866709725 hasAuthorship W1866709725A5070549966 @default.
- W1866709725 hasBestOaLocation W18667097251 @default.
- W1866709725 hasConcept C121332964 @default.
- W1866709725 hasConcept C134306372 @default.
- W1866709725 hasConcept C146630112 @default.
- W1866709725 hasConcept C158622935 @default.
- W1866709725 hasConcept C17825722 @default.
- W1866709725 hasConcept C182310444 @default.
- W1866709725 hasConcept C2524010 @default.
- W1866709725 hasConcept C26955809 @default.
- W1866709725 hasConcept C33923547 @default.
- W1866709725 hasConcept C37914503 @default.
- W1866709725 hasConcept C62520636 @default.
- W1866709725 hasConceptScore W1866709725C121332964 @default.
- W1866709725 hasConceptScore W1866709725C134306372 @default.