Matches in SemOpenAlex for { <https://semopenalex.org/work/W1867395736> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W1867395736 endingPage "251" @default.
- W1867395736 startingPage "225" @default.
- W1867395736 abstract "One of the main aims of this chapter is to complete the classification theorem for quaternion algebras over a number field by establishing the existence part of that theorem. This theorem, together with other results in this chapter, make use of the rings of adèles and groups of idèles associated to number fields and quaternion algebras. These rings and groups and their component parts are locally compact groups so that some aspects of their Haar measures, duality and abstract harmonic analysis go into this study. The results on adèles and idèles which are discussed here are aimed towards their application, in the next chapter, of producing discrete arithmetic subgroups of finite covolume. They will also enable us to make volume calculations on arithmetic Kleinian and Fuchsian groups in subsequent chapters. For these purposes and other applications subsequently, there are two crucial results here. One is the Strong Approximation Theorem, which is proved in the last section of this chapter. The other, which is central in subsequent results giving the covolume of arithmetic Fuchsian and Kleinian groups in terms of the arithmetic data, is that the Tamagawa number is 1. The Tamagawa number is the volume of a certain quotient of an idèle group measured with respect to its Tamagawa measure. The Tamagawa measures can be invariantly defined on the local components of the rings of adèles and groups of idèles and these are fully discussed here. The relevant quotients are shown to be compact and so will have finite volume. The proof that the Tamagawa volume, which is, by definition, the Tamagawa number, is precisely 1, is not included." @default.
- W1867395736 created "2016-06-24" @default.
- W1867395736 creator A5045709664 @default.
- W1867395736 creator A5048251698 @default.
- W1867395736 date "2003-01-01" @default.
- W1867395736 modified "2023-10-16" @default.
- W1867395736 title "Quaternion Algebras II" @default.
- W1867395736 cites W1560018030 @default.
- W1867395736 cites W1580817973 @default.
- W1867395736 cites W4211143314 @default.
- W1867395736 cites W4255924734 @default.
- W1867395736 doi "https://doi.org/10.1007/978-1-4757-6720-9_8" @default.
- W1867395736 hasPublicationYear "2003" @default.
- W1867395736 type Work @default.
- W1867395736 sameAs 1867395736 @default.
- W1867395736 citedByCount "0" @default.
- W1867395736 crossrefType "book-chapter" @default.
- W1867395736 hasAuthorship W1867395736A5045709664 @default.
- W1867395736 hasAuthorship W1867395736A5048251698 @default.
- W1867395736 hasConcept C130805567 @default.
- W1867395736 hasConcept C136119220 @default.
- W1867395736 hasConcept C178790620 @default.
- W1867395736 hasConcept C185592680 @default.
- W1867395736 hasConcept C199422724 @default.
- W1867395736 hasConcept C200127275 @default.
- W1867395736 hasConcept C202444582 @default.
- W1867395736 hasConcept C2524010 @default.
- W1867395736 hasConcept C2781311116 @default.
- W1867395736 hasConcept C31498916 @default.
- W1867395736 hasConcept C33923547 @default.
- W1867395736 hasConcept C58450382 @default.
- W1867395736 hasConcept C94375191 @default.
- W1867395736 hasConcept C9652623 @default.
- W1867395736 hasConcept C97720592 @default.
- W1867395736 hasConceptScore W1867395736C130805567 @default.
- W1867395736 hasConceptScore W1867395736C136119220 @default.
- W1867395736 hasConceptScore W1867395736C178790620 @default.
- W1867395736 hasConceptScore W1867395736C185592680 @default.
- W1867395736 hasConceptScore W1867395736C199422724 @default.
- W1867395736 hasConceptScore W1867395736C200127275 @default.
- W1867395736 hasConceptScore W1867395736C202444582 @default.
- W1867395736 hasConceptScore W1867395736C2524010 @default.
- W1867395736 hasConceptScore W1867395736C2781311116 @default.
- W1867395736 hasConceptScore W1867395736C31498916 @default.
- W1867395736 hasConceptScore W1867395736C33923547 @default.
- W1867395736 hasConceptScore W1867395736C58450382 @default.
- W1867395736 hasConceptScore W1867395736C94375191 @default.
- W1867395736 hasConceptScore W1867395736C9652623 @default.
- W1867395736 hasConceptScore W1867395736C97720592 @default.
- W1867395736 hasLocation W18673957361 @default.
- W1867395736 hasOpenAccess W1867395736 @default.
- W1867395736 hasPrimaryLocation W18673957361 @default.
- W1867395736 hasRelatedWork W1867395736 @default.
- W1867395736 hasRelatedWork W2014037164 @default.
- W1867395736 hasRelatedWork W2059461087 @default.
- W1867395736 hasRelatedWork W2087502041 @default.
- W1867395736 hasRelatedWork W2395817159 @default.
- W1867395736 hasRelatedWork W2783989611 @default.
- W1867395736 hasRelatedWork W2963456550 @default.
- W1867395736 hasRelatedWork W35571270 @default.
- W1867395736 hasRelatedWork W4249089511 @default.
- W1867395736 hasRelatedWork W4249580765 @default.
- W1867395736 isParatext "false" @default.
- W1867395736 isRetracted "false" @default.
- W1867395736 magId "1867395736" @default.
- W1867395736 workType "book-chapter" @default.