Matches in SemOpenAlex for { <https://semopenalex.org/work/W1869455521> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W1869455521 endingPage "303" @default.
- W1869455521 startingPage "270" @default.
- W1869455521 abstract "The application of concepts from chaos theory to a broad range of lower level computer vision has proven useful throughout the text so far. These tasks have included motion detection and segmentation, texture analysis and image registration and tracking. The application of chaos theory to the higher level computer vision task of pattern recognition has also been an area of active research. This is particularly true in the area of chaotic neural networks based on the known chaotic behavior of biological neural systems. Pattern recognition can be considered an optimization problem where the best matching pattern maximizes the probability of correct classification. The application of optimization algorithms such as genetic algorithms to pattern recognition has also proven fruitful, and the dependence of these algorithms on random number generation for processes such as mutation makes them logical candidates for improvements using chaos theory to develop more robust random behavior. In this chapter the application of chaos theory to neural networks and genetic algorithms for the high level computer vision function of object recognition will be explored." @default.
- W1869455521 created "2016-06-24" @default.
- W1869455521 creator A5078023370 @default.
- W1869455521 date "2014-07-20" @default.
- W1869455521 modified "2023-10-16" @default.
- W1869455521 title "More Applications to Post-Attentive Vision - Chaos Theory and Object Recognition" @default.
- W1869455521 doi "https://doi.org/10.2174/9781608059003114010013" @default.
- W1869455521 hasPublicationYear "2014" @default.
- W1869455521 type Work @default.
- W1869455521 sameAs 1869455521 @default.
- W1869455521 citedByCount "0" @default.
- W1869455521 crossrefType "book-chapter" @default.
- W1869455521 hasAuthorship W1869455521A5078023370 @default.
- W1869455521 hasConcept C153180895 @default.
- W1869455521 hasConcept C154945302 @default.
- W1869455521 hasConcept C2777052490 @default.
- W1869455521 hasConcept C2779374083 @default.
- W1869455521 hasConcept C2781238097 @default.
- W1869455521 hasConcept C31972630 @default.
- W1869455521 hasConcept C38652104 @default.
- W1869455521 hasConcept C41008148 @default.
- W1869455521 hasConcept C64876066 @default.
- W1869455521 hasConcept C92866567 @default.
- W1869455521 hasConceptScore W1869455521C153180895 @default.
- W1869455521 hasConceptScore W1869455521C154945302 @default.
- W1869455521 hasConceptScore W1869455521C2777052490 @default.
- W1869455521 hasConceptScore W1869455521C2779374083 @default.
- W1869455521 hasConceptScore W1869455521C2781238097 @default.
- W1869455521 hasConceptScore W1869455521C31972630 @default.
- W1869455521 hasConceptScore W1869455521C38652104 @default.
- W1869455521 hasConceptScore W1869455521C41008148 @default.
- W1869455521 hasConceptScore W1869455521C64876066 @default.
- W1869455521 hasConceptScore W1869455521C92866567 @default.
- W1869455521 hasLocation W18694555211 @default.
- W1869455521 hasOpenAccess W1869455521 @default.
- W1869455521 hasPrimaryLocation W18694555211 @default.
- W1869455521 hasRelatedWork W1528044252 @default.
- W1869455521 hasRelatedWork W1531683208 @default.
- W1869455521 hasRelatedWork W2009052148 @default.
- W1869455521 hasRelatedWork W2200925278 @default.
- W1869455521 hasRelatedWork W2328068029 @default.
- W1869455521 hasRelatedWork W2330829846 @default.
- W1869455521 hasRelatedWork W2350353705 @default.
- W1869455521 hasRelatedWork W2363840281 @default.
- W1869455521 hasRelatedWork W2372904789 @default.
- W1869455521 hasRelatedWork W2707663905 @default.
- W1869455521 isParatext "false" @default.
- W1869455521 isRetracted "false" @default.
- W1869455521 magId "1869455521" @default.
- W1869455521 workType "book-chapter" @default.