Matches in SemOpenAlex for { <https://semopenalex.org/work/W1869521996> ?p ?o ?g. }
- W1869521996 abstract "Background In the UK, dementia affects 5% of the population aged over 65 years and 25% of those over 85 years. Frontotemporal dementia (FTD) represents one subtype and is thought to account for up to 16% of all degenerative dementias. Although the core of the diagnostic process in dementia rests firmly on clinical and cognitive assessments, a wide range of investigations are available to aid diagnosis. Regional cerebral blood flow (rCBF) single‐photon emission computed tomography (SPECT) is an established clinical tool that uses an intravenously injected radiolabelled tracer to map blood flow in the brain. In FTD the characteristic pattern seen is hypoperfusion of the frontal and anterior temporal lobes. This pattern of blood flow is different to patterns seen in other subtypes of dementia and so can be used to differentiate FTD. It has been proposed that a diagnosis of FTD, (particularly early stage), should be made not only on the basis of clinical criteria but using a combination of other diagnostic findings, including rCBF SPECT. However, more extensive testing comes at a financial cost, and with a potential risk to patient safety and comfort. Objectives To determine the diagnostic accuracy of rCBF SPECT for diagnosing FTD in populations with suspected dementia in secondary/tertiary healthcare settings and in the differential diagnosis of FTD from other dementia subtypes. Search methods Our search strategy used two concepts: (a) the index test and (b) the condition of interest. We searched citation databases, including MEDLINE (Ovid SP), EMBASE (Ovid SP), BIOSIS (Ovid SP), Web of Science Core Collection (ISI Web of Science), PsycINFO (Ovid SP), CINAHL (EBSCOhost) and LILACS (Bireme), using structured search strategies appropriate for each database. In addition we searched specialised sources of diagnostic test accuracy studies and reviews including: MEDION (Universities of Maastricht and Leuven), DARE (Database of Abstracts of Reviews of Effects) and HTA (Health Technology Assessment) database. We requested a search of the Cochrane Register of Diagnostic Test Accuracy Studies and used the related articles feature in PubMed to search for additional studies. We tracked key studies in citation databases such as Science Citation Index and Scopus to ascertain any further relevant studies. We identified ‘grey’ literature, mainly in the form of conference abstracts, through the Web of Science Core Collection, including Conference Proceedings Citation Index and Embase. The most recent search for this review was run on the 1 June 2013. Following title and abstract screening of the search results, full‐text papers were obtained for each potentially eligible study. These papers were then independently evaluated for inclusion or exclusion. Selection criteria We included both case‐control and cohort (delayed verification of diagnosis) studies. Where studies used a case‐control design we included all participants who had a clinical diagnosis of FTD or other dementia subtype using standard clinical diagnostic criteria. For cohort studies, we included studies where all participants with suspected dementia were administered rCBF SPECT at baseline. We excluded studies of participants from selected populations (e.g. post‐stroke) and studies of participants with a secondary cause of cognitive impairment. Data collection and analysis Two review authors extracted information on study characteristics and data for the assessment of methodological quality and the investigation of heterogeneity. We assessed the methodological quality of each study using the QUADAS‐2 (Quality Assessment of Diagnostic Accuracy Studies) tool. We produced a narrative summary describing numbers of studies that were found to have high/low/unclear risk of bias as well as concerns regarding applicability. To produce 2 x 2 tables, we dichotomised the rCBF SPECT results (scan positive or negative for FTD) and cross‐tabulated them against the results for the reference standard. These tables were then used to calculate the sensitivity and specificity of the index test. Meta‐analysis was not performed due to the considerable between‐study variation in clinical and methodological characteristics. Main results Eleven studies (1117 participants) met our inclusion criteria. These consisted of six case‐control studies, two retrospective cohort studies and three prospective cohort studies. Three studies used single‐headed camera SPECT while the remaining eight used multiple‐headed camera SPECT. Study design and methods varied widely. Overall, participant selection was not well described and the studies were judged as having either high or unclear risk of bias. Often the threshold used to define a positive SPECT result was not predefined and the results were reported with knowledge of the reference standard. Concerns regarding applicability of the studies to the review question were generally low across all three domains (participant selection, index test and reference standard). Sensitivities and specificities for differentiating FTD from non‐FTD ranged from 0.73 to 1.00 and from 0.80 to 1.00, respectively, for the three multiple‐headed camera studies. Sensitivities were lower for the two single‐headed camera studies; one reported a sensitivity and specificity of 0.40 (95% confidence interval (CI) 0.05 to 0.85) and 0.95 (95% CI 0.90 to 0.98), respectively, and the other a sensitivity and specificity of 0.36 (95% CI 0.24 to 0.50) and 0.92 (95% CI 0.88 to 0.95), respectively. Eight of the 11 studies which used SPECT to differentiate FTD from Alzheimer's disease used multiple‐headed camera SPECT. Of these studies, five used a case‐control design and reported sensitivities of between 0.52 and 1.00, and specificities of between 0.41 and 0.86. The remaining three studies used a cohort design and reported sensitivities of between 0.73 and 1.00, and specificities of between 0.94 and 1.00. The three studies that used single‐headed camera SPECT reported sensitivities of between 0.40 and 0.80, and specificities of between 0.61 and 0.97. Authors' conclusions At present, we would not recommend the routine use of rCBF SPECT in clinical practice because there is insufficient evidence from the available literature to support this. Further research into the use of rCBF SPECT for differentiating FTD from other dementias is required. In particular, protocols should be standardised, study populations should be well described, the threshold for 'abnormal' scans predefined and clear details given on how scans are analysed. More prospective cohort studies that verify the presence or absence of FTD during a period of follow up should be undertaken." @default.
- W1869521996 created "2016-06-24" @default.
- W1869521996 creator A5001485961 @default.
- W1869521996 creator A5002812050 @default.
- W1869521996 creator A5010879228 @default.
- W1869521996 creator A5030974989 @default.
- W1869521996 creator A5090298885 @default.
- W1869521996 creator A5090332848 @default.
- W1869521996 creator A5091649890 @default.
- W1869521996 date "2015-06-23" @default.
- W1869521996 modified "2023-09-28" @default.
- W1869521996 title "Regional Cerebral Blood Flow Single Photon Emission Computed Tomography for detection of Frontotemporal dementia in people with suspected dementia" @default.
- W1869521996 cites W1522658556 @default.
- W1869521996 cites W1555849424 @default.
- W1869521996 cites W1606343473 @default.
- W1869521996 cites W1870043354 @default.
- W1869521996 cites W1964188390 @default.
- W1869521996 cites W1966013907 @default.
- W1869521996 cites W1966274534 @default.
- W1869521996 cites W1966813513 @default.
- W1869521996 cites W1971565607 @default.
- W1869521996 cites W1973738012 @default.
- W1869521996 cites W1974583546 @default.
- W1869521996 cites W1981844785 @default.
- W1869521996 cites W1989294823 @default.
- W1869521996 cites W1994487817 @default.
- W1869521996 cites W1998088268 @default.
- W1869521996 cites W1999333326 @default.
- W1869521996 cites W2002023919 @default.
- W1869521996 cites W2005501262 @default.
- W1869521996 cites W2010528085 @default.
- W1869521996 cites W2014886338 @default.
- W1869521996 cites W2018557506 @default.
- W1869521996 cites W2024776187 @default.
- W1869521996 cites W2025114635 @default.
- W1869521996 cites W2033020349 @default.
- W1869521996 cites W2033448370 @default.
- W1869521996 cites W2034962152 @default.
- W1869521996 cites W2035264537 @default.
- W1869521996 cites W2036427176 @default.
- W1869521996 cites W2039937642 @default.
- W1869521996 cites W2041161976 @default.
- W1869521996 cites W2057959541 @default.
- W1869521996 cites W2058683700 @default.
- W1869521996 cites W2061608261 @default.
- W1869521996 cites W2061883399 @default.
- W1869521996 cites W2062280973 @default.
- W1869521996 cites W2063940822 @default.
- W1869521996 cites W2067439875 @default.
- W1869521996 cites W2067772208 @default.
- W1869521996 cites W2077151956 @default.
- W1869521996 cites W2077311804 @default.
- W1869521996 cites W2086028718 @default.
- W1869521996 cites W2087924155 @default.
- W1869521996 cites W2090341731 @default.
- W1869521996 cites W2091173932 @default.
- W1869521996 cites W2091304223 @default.
- W1869521996 cites W2093567330 @default.
- W1869521996 cites W2095798723 @default.
- W1869521996 cites W2101967036 @default.
- W1869521996 cites W2102572922 @default.
- W1869521996 cites W2102808940 @default.
- W1869521996 cites W2102932082 @default.
- W1869521996 cites W2106279576 @default.
- W1869521996 cites W2112150247 @default.
- W1869521996 cites W2115017507 @default.
- W1869521996 cites W2126747154 @default.
- W1869521996 cites W2128030851 @default.
- W1869521996 cites W2133935497 @default.
- W1869521996 cites W2136557657 @default.
- W1869521996 cites W2143460188 @default.
- W1869521996 cites W2146729934 @default.
- W1869521996 cites W2156220037 @default.
- W1869521996 cites W2158117798 @default.
- W1869521996 cites W2160947116 @default.
- W1869521996 cites W2312394529 @default.
- W1869521996 cites W2330332791 @default.
- W1869521996 cites W4210340856 @default.
- W1869521996 cites W4210965305 @default.
- W1869521996 cites W4243102348 @default.
- W1869521996 cites W4243799182 @default.
- W1869521996 cites W4255106309 @default.
- W1869521996 doi "https://doi.org/10.1002/14651858.cd010896.pub2" @default.
- W1869521996 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6464981" @default.
- W1869521996 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26102272" @default.
- W1869521996 hasPublicationYear "2015" @default.
- W1869521996 type Work @default.
- W1869521996 sameAs 1869521996 @default.
- W1869521996 citedByCount "15" @default.
- W1869521996 countsByYear W18695219962015 @default.
- W1869521996 countsByYear W18695219962016 @default.
- W1869521996 countsByYear W18695219962017 @default.
- W1869521996 countsByYear W18695219962019 @default.
- W1869521996 countsByYear W18695219962020 @default.
- W1869521996 countsByYear W18695219962021 @default.
- W1869521996 countsByYear W18695219962023 @default.
- W1869521996 crossrefType "journal-article" @default.
- W1869521996 hasAuthorship W1869521996A5001485961 @default.
- W1869521996 hasAuthorship W1869521996A5002812050 @default.
- W1869521996 hasAuthorship W1869521996A5010879228 @default.