Matches in SemOpenAlex for { <https://semopenalex.org/work/W1870536699> ?p ?o ?g. }
- W1870536699 abstract "The use of loss-mitigation techniques in nitrogen and phosphate cycles become more important due to economic, environmental and social aspects and form the basis for a resource-saving agriculture. Subject of this study was the evaluation of different methods to minimize nutrient losses in nitrogen and phosphate cycles under ecological and economic points. In this context, the following questions were investigated: • What is the influence of soil, application technique and nitrification inhibitor on nitrogen losses (NH3 and N2O) and mineral soil N in relation to slurry and digestate application? • Is it possible to reduce N losses (NH3 and N2O) and to achieve higher maize yields after a slurry application in two rows on top of each other? • Is it possible to produce P recycling fertilizers from sewage sludge ash with characteristics in P solubility, mineral components and effect on yield comparable to triplesuperpshophate (TSP)? The influence of slurry and digestate application techniques (trailing hose with incorporation and injection in 15 and 20 cm) on emissions (NH3, N2O, CO2 und CH4) in different soils (Plaggic Anthrosol, Gleysol and Histosol) was studied using the nitrification inhibitor 3,4-Dimethyl-Pyrazol-Phosphate (DMPP).This was done in two microcosm studies. Subsequently a field try was performed, testing the mentioned parameters on N losses during the application of digestate and slurry. Additionally slurry was injected in two rows on top of each other to characterise the influence on N losses and the effect on maize yields. In the microcosm studies with undisturbed soil cores it was found that the soil (texture, water and carbon content) (P < 0,001), the addition of a nitrification inhibitor to digestate (P < 0.001) and the application technique (P < 0.01) can influence N2O emissions. The injection depth (P < 0.01) only influenced N2O emissions in the investigated Histosol. In soils with low soil carbon contents (Gleysol: 1,7 % Corg; Plaggic Anthrosol: 2,4 % Corg) and low soil water contents (Gleysol: 28 % H2O vol.; Plaggic Anthrosol: 21 % H2O vol.) the application technique had only few influence on the N2O emission. Significant differences (P < 0.5) between slurry and digestate application are only recognized on the Histosol in regard to Gleysol and Plaggic Anthrosol. The use of the nitrification inhibitor DMPP reduced N2O emissions on an average of 45 % (P < 0.001) in the microcosm study. The effect of DMPP was independent on the application technique, the influence of DMPP (P < 0.001) on the N2O emission was significantly larger than the application techniques (P < 0.01). For further reduction of N losses a Premaister (underfootinjector – company Kotte Landtechnik, Germany) was modified with two injection slits (10 and 20 cm) on top of each other. This modification had the aim to optimize the nutrient requirement of the maize in different growing stages. The field trial did not show any significant influences on N2O emission between the used application techniques [trailing hose with incorporation (slurry and digestate), injection 15 cm (slurry and digestate), injection 10 und 20 cm (slurry), injektion 15 cm with DMPP (slurry) and control without fertilization and soil tillage]. Average emissions were between 52 - 153 µg N/h/m². Slurry application in two rows on top of each other tended to emit highest rates of N2O (153 µg N/h/m²).This application technique of slurry resulted in „anoxic hot spots“. These hot spots favor nitrification and denitrification. Comparing the slurry injection without DMPP (64 µg N/h/m²) to the slurry injection with DMPP (71 µg N/h/m²) a reduction of N2O emissions was not found. In comparison to all fertiliser applications DMPP application resulted in average reduction of N2O emissions of 33 %. NH3 emissions were under the detection limit. The different application techniques did not show any influence on the mineral N content of the soil. Mineral N contents in both microcosm studies and the field trial were highest in the treatments with DMPP addition. DMPP reduced the conversion of NH4-N into NO3-N. In consequence the mineral N content in the soil was increased about 16 %. Regarding yield and quality in the field trial the different application techniques did not show significant differences in plant yield (537 - 620 dt/ha fresh matter and 197 - 225 dt/ha dry matter). The trailing hose technique with immediate incorporation (141 €/ha) is more expensive than the injection technique (82 €/ha). To increase the efficiency of slurry and digestate application the use of the injection technique (injection in 12 - 15 cm) combined with nitrification inhibitors is recommended in soils with low carbon and water contents. In soils with carbon contents > 5% and a field capacity larger than 60 % the trailing hose technique in combination with a nitrification inhibitor should be applied. In addition to the studies on N losses after slurry and digestate application the P recycling potential of thermochemical treated sewage sludge ashes was analysed. In a laboratory trial different thermochemical treated sewage sludge ashes (sewage sludge ash + Na, Ca, Si and sewage sludge ash + steel mill slag) were analysed on their P solubility and mineral composition. Besides the fertilization effect of these products was studied in a pot trial. By thermochemical treatment of sewage sludge ashes poor plant available phosphates (Ca3(PO4)2) can be converted to good available calcium and sodium silico phosphates Na2Ca4(PO4)2SiO4 and Ca2SiO4 x 0,05Ca3(PO4)2. The thermochemical treated sewage sludge ashes showed high P solubilities (> 85 %) in neutral ammonium citrate, whereas the untreated sewage sludge ash only showed a solubility of 54 % in neutral ammonium citrate. For further analysis a pot trial with maize was conducted. In this trial different thermochemical processed sewage sludge ashes (sewage sludge + Na, Ca, Si and sewage sludge + steel mill slag) were compared to an untreated sewage sludge ash and to TSP in three different fertilization levels. Compared to an untreated sewage sludge ash (8,35 g/pot dry matter yield) the fertilization with thermochemical treated sewage sludge ashes (45 – 55 g/pot dry matter yield) increased yields significantly (P < 0.05). The yield effect of the thermochemical treated sewage sludge ashes is comparable to the treatments fertilized with TSP (48 g/pot dry matter). Thermochemical treated sewage sludge ashes (102 %) show a higher RAE than untreated sewage sludge ashes (21 %) and are comparable in their RAE to TSP (100 %). The product prices for thermochemical treated sewage sludge ahes are ranging between 2,50 to 3,50 €/kg P (sewage sludge ash + Na, Ca, Si) and 2,15 €/kg P (sewage sludge ash + steel mill slag)." @default.
- W1870536699 created "2016-06-24" @default.
- W1870536699 creator A5061724214 @default.
- W1870536699 date "2022-02-21" @default.
- W1870536699 modified "2023-10-01" @default.
- W1870536699 title "Verfahrenstechnische Bewertung ausgewählter technologischer Verfahren zur Verlustminimierung bei der Wirtschaftsdüngerausbringung und beim Phosphorrecycling" @default.
- W1870536699 cites W1479559938 @default.
- W1870536699 cites W1484593891 @default.
- W1870536699 cites W1511827314 @default.
- W1870536699 cites W1589222532 @default.
- W1870536699 cites W1601329690 @default.
- W1870536699 cites W175070683 @default.
- W1870536699 cites W182458596 @default.
- W1870536699 cites W1964446355 @default.
- W1870536699 cites W1969471920 @default.
- W1870536699 cites W1976961689 @default.
- W1870536699 cites W1977765608 @default.
- W1870536699 cites W1979027498 @default.
- W1870536699 cites W1981590261 @default.
- W1870536699 cites W1984084218 @default.
- W1870536699 cites W1984702014 @default.
- W1870536699 cites W1989101695 @default.
- W1870536699 cites W1997547659 @default.
- W1870536699 cites W1998541128 @default.
- W1870536699 cites W2000949839 @default.
- W1870536699 cites W2003605554 @default.
- W1870536699 cites W2010591076 @default.
- W1870536699 cites W2010957608 @default.
- W1870536699 cites W2015848879 @default.
- W1870536699 cites W2017350492 @default.
- W1870536699 cites W2019223539 @default.
- W1870536699 cites W2023220919 @default.
- W1870536699 cites W2027369110 @default.
- W1870536699 cites W2029792540 @default.
- W1870536699 cites W2031816331 @default.
- W1870536699 cites W2037748207 @default.
- W1870536699 cites W2037801985 @default.
- W1870536699 cites W2041064699 @default.
- W1870536699 cites W2042640782 @default.
- W1870536699 cites W2044842834 @default.
- W1870536699 cites W2050932334 @default.
- W1870536699 cites W2055641323 @default.
- W1870536699 cites W2056248714 @default.
- W1870536699 cites W2058850533 @default.
- W1870536699 cites W2065828931 @default.
- W1870536699 cites W2068231224 @default.
- W1870536699 cites W2069234560 @default.
- W1870536699 cites W2071917162 @default.
- W1870536699 cites W2085092183 @default.
- W1870536699 cites W2088583718 @default.
- W1870536699 cites W2089254207 @default.
- W1870536699 cites W2104616956 @default.
- W1870536699 cites W2105630630 @default.
- W1870536699 cites W2113437040 @default.
- W1870536699 cites W2116125252 @default.
- W1870536699 cites W2123126377 @default.
- W1870536699 cites W2125103457 @default.
- W1870536699 cites W2126284248 @default.
- W1870536699 cites W2132054314 @default.
- W1870536699 cites W2136275943 @default.
- W1870536699 cites W2137541415 @default.
- W1870536699 cites W2152412899 @default.
- W1870536699 cites W2158765373 @default.
- W1870536699 cites W2164278774 @default.
- W1870536699 cites W2169052704 @default.
- W1870536699 cites W2182752480 @default.
- W1870536699 cites W2195470441 @default.
- W1870536699 cites W2506054713 @default.
- W1870536699 cites W254376762 @default.
- W1870536699 cites W2611321288 @default.
- W1870536699 cites W2624755358 @default.
- W1870536699 cites W2745718824 @default.
- W1870536699 cites W2753092410 @default.
- W1870536699 cites W2761416966 @default.
- W1870536699 cites W2787267440 @default.
- W1870536699 cites W29323472 @default.
- W1870536699 cites W3142878681 @default.
- W1870536699 cites W338833215 @default.
- W1870536699 cites W51252280 @default.
- W1870536699 cites W54020448 @default.
- W1870536699 cites W595957798 @default.
- W1870536699 cites W83682433 @default.
- W1870536699 cites W2184160481 @default.
- W1870536699 doi "https://doi.org/10.53846/goediss-5221" @default.
- W1870536699 hasPublicationYear "2022" @default.
- W1870536699 type Work @default.
- W1870536699 sameAs 1870536699 @default.
- W1870536699 citedByCount "0" @default.
- W1870536699 crossrefType "dissertation" @default.
- W1870536699 hasAuthorship W1870536699A5061724214 @default.
- W1870536699 hasBestOaLocation W18705366991 @default.
- W1870536699 hasConcept C205649164 @default.
- W1870536699 hasConcept C97137747 @default.
- W1870536699 hasConceptScore W1870536699C205649164 @default.
- W1870536699 hasConceptScore W1870536699C97137747 @default.
- W1870536699 hasLocation W18705366991 @default.
- W1870536699 hasOpenAccess W1870536699 @default.
- W1870536699 hasPrimaryLocation W18705366991 @default.
- W1870536699 hasRelatedWork W11365241 @default.
- W1870536699 hasRelatedWork W11525691 @default.