Matches in SemOpenAlex for { <https://semopenalex.org/work/W1870794886> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1870794886 endingPage "118" @default.
- W1870794886 startingPage "106" @default.
- W1870794886 abstract "Forest fires importantly influence our environment and lives. The ability of accurately predicting the area that may be involved in a forest fire event may help in optimizing fire management efforts. Given the complexity of the task, powerful computational tools are needed for predicting the amount of area that will be burned during a forest fire. The purpose of this study was to develop an intelligent system based on genetic programming for the prediction of burned areas, using only data related to the forest under analysis and meteorological data. We used geometric semantic genetic programming based on recently defined geometric semantic genetic operators for genetic programming. Experimental results, achieved using a database of 517 forest fire events between 2000 and 2003, showed the appropriateness of the proposed system for the prediction of the burned areas. In particular, results obtained with geometric semantic genetic programming were significantly better than those produced by standard genetic programming and other state of the art machine learning methods on both training and out-of-sample data. This study suggests that deeper investigation of genetic programming in the field of forest fires prediction may be productive." @default.
- W1870794886 created "2016-06-24" @default.
- W1870794886 creator A5039455949 @default.
- W1870794886 creator A5056916227 @default.
- W1870794886 creator A5087976149 @default.
- W1870794886 date "2015-04-01" @default.
- W1870794886 modified "2023-09-29" @default.
- W1870794886 title "Predicting Burned Areas of Forest Fires: an Artificial Intelligence Approach" @default.
- W1870794886 cites W102043130 @default.
- W1870794886 cites W2019625726 @default.
- W1870794886 cites W2037343293 @default.
- W1870794886 cites W2072918701 @default.
- W1870794886 cites W2094954730 @default.
- W1870794886 cites W2111222097 @default.
- W1870794886 cites W2127112096 @default.
- W1870794886 cites W2137764911 @default.
- W1870794886 cites W2170452676 @default.
- W1870794886 cites W2492294785 @default.
- W1870794886 cites W26950529 @default.
- W1870794886 cites W2911964244 @default.
- W1870794886 cites W4239794275 @default.
- W1870794886 doi "https://doi.org/10.4996/fireecology.1101106" @default.
- W1870794886 hasPublicationYear "2015" @default.
- W1870794886 type Work @default.
- W1870794886 sameAs 1870794886 @default.
- W1870794886 citedByCount "55" @default.
- W1870794886 countsByYear W18707948862015 @default.
- W1870794886 countsByYear W18707948862016 @default.
- W1870794886 countsByYear W18707948862018 @default.
- W1870794886 countsByYear W18707948862019 @default.
- W1870794886 countsByYear W18707948862020 @default.
- W1870794886 countsByYear W18707948862021 @default.
- W1870794886 countsByYear W18707948862022 @default.
- W1870794886 countsByYear W18707948862023 @default.
- W1870794886 crossrefType "journal-article" @default.
- W1870794886 hasAuthorship W1870794886A5039455949 @default.
- W1870794886 hasAuthorship W1870794886A5056916227 @default.
- W1870794886 hasAuthorship W1870794886A5087976149 @default.
- W1870794886 hasBestOaLocation W18707948861 @default.
- W1870794886 hasConcept C110332635 @default.
- W1870794886 hasConcept C119857082 @default.
- W1870794886 hasConcept C127413603 @default.
- W1870794886 hasConcept C154945302 @default.
- W1870794886 hasConcept C201995342 @default.
- W1870794886 hasConcept C202444582 @default.
- W1870794886 hasConcept C2780451532 @default.
- W1870794886 hasConcept C33923547 @default.
- W1870794886 hasConcept C41008148 @default.
- W1870794886 hasConcept C8880873 @default.
- W1870794886 hasConcept C9652623 @default.
- W1870794886 hasConceptScore W1870794886C110332635 @default.
- W1870794886 hasConceptScore W1870794886C119857082 @default.
- W1870794886 hasConceptScore W1870794886C127413603 @default.
- W1870794886 hasConceptScore W1870794886C154945302 @default.
- W1870794886 hasConceptScore W1870794886C201995342 @default.
- W1870794886 hasConceptScore W1870794886C202444582 @default.
- W1870794886 hasConceptScore W1870794886C2780451532 @default.
- W1870794886 hasConceptScore W1870794886C33923547 @default.
- W1870794886 hasConceptScore W1870794886C41008148 @default.
- W1870794886 hasConceptScore W1870794886C8880873 @default.
- W1870794886 hasConceptScore W1870794886C9652623 @default.
- W1870794886 hasIssue "1" @default.
- W1870794886 hasLocation W18707948861 @default.
- W1870794886 hasOpenAccess W1870794886 @default.
- W1870794886 hasPrimaryLocation W18707948861 @default.
- W1870794886 hasRelatedWork W2961085424 @default.
- W1870794886 hasRelatedWork W3046775127 @default.
- W1870794886 hasRelatedWork W4285260836 @default.
- W1870794886 hasRelatedWork W4286629047 @default.
- W1870794886 hasRelatedWork W4288754364 @default.
- W1870794886 hasRelatedWork W4306321456 @default.
- W1870794886 hasRelatedWork W4306674287 @default.
- W1870794886 hasRelatedWork W4308734192 @default.
- W1870794886 hasRelatedWork W4312831135 @default.
- W1870794886 hasRelatedWork W4224009465 @default.
- W1870794886 hasVolume "11" @default.
- W1870794886 isParatext "false" @default.
- W1870794886 isRetracted "false" @default.
- W1870794886 magId "1870794886" @default.
- W1870794886 workType "article" @default.