Matches in SemOpenAlex for { <https://semopenalex.org/work/W1871330250> ?p ?o ?g. }
- W1871330250 abstract "Abstract This article concerns the application of nuclear magnetic resonance (NMR) spectroscopic techniques to the analysis of geological materials and glasses. It includes inorganic minerals and glasses, but does not cover soils and clay minerals to any extent. The first part presents an overview of solid‐state NMR experiments applicable to inorganic solids. The range of nuclei accessible by NMR and the particular requirements for obtaining good spectra of more difficult nuclei, including quadrupolar nuclei, are discussed. The experimental conditions under which solid‐state NMR can provide quantitative analytical measurements are also considered. NMR spectroscopy provides element‐specific speciation and structural information including coordination environment and bond distances. It is particularly valuable for the analysis of amorphous and partially crystalline materials not amenable to structure determination by X‐ray diffraction. NMR can detect and quantify materials containing multiple phases and can be used for in situ monitoring of phase transitions. It provides qualitative and quantitative speciation information for framework nuclei in glasses and is also capable of characterizing the dynamic behavior of mobile ions and solvent through relaxation, diffusion and chemical exchange experiments. Thus it has become an important technique for the study of hydrous minerals and gels and for ion‐conducting glasses. The sensitivity of NMR varies considerably, depending on the nucleus observed, its abundance and its chemical environment. NMR sensitivities and detection limits cannot compete with elemental analytical techniques such as X‐ray fluorescence. In addition, quantitation in solids requires careful control of experimental parameters and careful calibration to avoid artifacts. However, the selectivity of NMR as an analytical technique is unsurpassed and the development of specialist pulse sequences to measure specific local interactions in solids makes it particularly well suited to the analysis of geological materials and glasses. NMR imaging enables structural information to be resolved in three dimensions, although resolution in solid‐state imaging is limited to tens of micrometers at best owing to the broader line widths and lower signal‐to‐noise ratios compared with liquids. However, capabilities in this field are being extended all the time and the application of NMR imaging techniques in materials analysis is expanding steadily. An alternative to conventional imaging is NMR force microscopy, which shows potential for surface mapping at higher resolutions. The applications section is organized on the basis of the materials being analyzed. Within each section, NMR techniques are classified according to the observed nuclei. The emphasis is on more recent applications and on developments leading to enhanced resolution and sensitivity. Silicates and aluminosilicates represent the largest class of applications, followed by phosphate, borate and other oxide glasses. Sol–gel materials and the reactions leading to gel formation are also discussed, as are hydrous materials more generally. The other important areas of application reviewed are minerals, ceramics, high‐temperature melts and ion‐conducting glasses. Finally, the applications of NMR imaging in this field, although sparse at present, are potentially very great. This is illustrated by two major areas of application to date, namely the imaging of bone minerals and cement and concrete." @default.
- W1871330250 created "2016-06-24" @default.
- W1871330250 creator A5029041009 @default.
- W1871330250 creator A5040264682 @default.
- W1871330250 date "2000-10-30" @default.
- W1871330250 modified "2023-10-10" @default.
- W1871330250 title "Nuclear Magnetic Resonance of Geological Materials and Glasses" @default.
- W1871330250 cites W1502987197 @default.
- W1871330250 cites W1669122313 @default.
- W1871330250 cites W174003808 @default.
- W1871330250 cites W1797515969 @default.
- W1871330250 cites W190291967 @default.
- W1871330250 cites W1918324037 @default.
- W1871330250 cites W1918519933 @default.
- W1871330250 cites W195722203 @default.
- W1871330250 cites W1963628731 @default.
- W1871330250 cites W1963699022 @default.
- W1871330250 cites W1963829977 @default.
- W1871330250 cites W1963876795 @default.
- W1871330250 cites W1964966496 @default.
- W1871330250 cites W1965089534 @default.
- W1871330250 cites W1965181368 @default.
- W1871330250 cites W1965367172 @default.
- W1871330250 cites W1965552580 @default.
- W1871330250 cites W1965591405 @default.
- W1871330250 cites W1966156903 @default.
- W1871330250 cites W1966235885 @default.
- W1871330250 cites W1966275944 @default.
- W1871330250 cites W1967492646 @default.
- W1871330250 cites W1968158841 @default.
- W1871330250 cites W1968310052 @default.
- W1871330250 cites W1968626425 @default.
- W1871330250 cites W1969145943 @default.
- W1871330250 cites W1969395143 @default.
- W1871330250 cites W1969419636 @default.
- W1871330250 cites W1970067880 @default.
- W1871330250 cites W1970656000 @default.
- W1871330250 cites W1971208206 @default.
- W1871330250 cites W1971629429 @default.
- W1871330250 cites W1972221097 @default.
- W1871330250 cites W1972474890 @default.
- W1871330250 cites W1973907865 @default.
- W1871330250 cites W1974560328 @default.
- W1871330250 cites W1974816249 @default.
- W1871330250 cites W1975061327 @default.
- W1871330250 cites W1975106700 @default.
- W1871330250 cites W1975669447 @default.
- W1871330250 cites W1976058690 @default.
- W1871330250 cites W1976077388 @default.
- W1871330250 cites W1976744435 @default.
- W1871330250 cites W1976951981 @default.
- W1871330250 cites W1977572942 @default.
- W1871330250 cites W1977597206 @default.
- W1871330250 cites W1977908019 @default.
- W1871330250 cites W1978130070 @default.
- W1871330250 cites W1978161985 @default.
- W1871330250 cites W1978656563 @default.
- W1871330250 cites W1979851071 @default.
- W1871330250 cites W1980640728 @default.
- W1871330250 cites W1981112632 @default.
- W1871330250 cites W1981478447 @default.
- W1871330250 cites W1982408734 @default.
- W1871330250 cites W1983538139 @default.
- W1871330250 cites W1984853919 @default.
- W1871330250 cites W1985240399 @default.
- W1871330250 cites W1985478554 @default.
- W1871330250 cites W1985760335 @default.
- W1871330250 cites W1986882167 @default.
- W1871330250 cites W1987275357 @default.
- W1871330250 cites W1987355132 @default.
- W1871330250 cites W1987673790 @default.
- W1871330250 cites W1987732184 @default.
- W1871330250 cites W1988156288 @default.
- W1871330250 cites W1988258501 @default.
- W1871330250 cites W1988356525 @default.
- W1871330250 cites W1988523159 @default.
- W1871330250 cites W1988838539 @default.
- W1871330250 cites W1988931510 @default.
- W1871330250 cites W1989016472 @default.
- W1871330250 cites W1989932785 @default.
- W1871330250 cites W1990370544 @default.
- W1871330250 cites W1990510153 @default.
- W1871330250 cites W1991469398 @default.
- W1871330250 cites W1991813167 @default.
- W1871330250 cites W1992020730 @default.
- W1871330250 cites W1992906449 @default.
- W1871330250 cites W1992952922 @default.
- W1871330250 cites W1993087871 @default.
- W1871330250 cites W1994587610 @default.
- W1871330250 cites W1994647761 @default.
- W1871330250 cites W1995078889 @default.
- W1871330250 cites W1995574770 @default.
- W1871330250 cites W1996517305 @default.
- W1871330250 cites W1997766122 @default.
- W1871330250 cites W1998094645 @default.
- W1871330250 cites W1998670980 @default.
- W1871330250 cites W2000098441 @default.
- W1871330250 cites W2000574074 @default.
- W1871330250 cites W2001821730 @default.
- W1871330250 cites W2002437230 @default.