Matches in SemOpenAlex for { <https://semopenalex.org/work/W1872153670> ?p ?o ?g. }
- W1872153670 abstract "The rules for credit lenders have become stricter since the financial crisis of 2007-2008. As a consequence, it has become more difficult for companies to obtain a loan. Many people and companies leave a trail of information about themselves on the Internet. Searching and extracting this information is accompanied with uncertainty. In this research, we study whether this uncertain online information can be used as an alternative or extra indicator for estimating a company's creditworthiness and how accounting for information uncertainty impacts the prediction performance. A data set consisting 3579 corporate ratings has been constructed using the data of an external data provider. Based on the results of a survey, a literature study and information availability tests, LinkedIn accounts of company owners, corporate Twitter accounts and corporate Facebook accounts were chosen as an information source for extracting indicators. In total, the Twitter and Facebook accounts of 387 companies and 436 corresponding LinkedIn owner accounts of this data set were manually searched. Information was harvested from these sources and several indicators have been derived from the harvested information. Two experiments were performed with this data. In the first experiment, a Naive Bayes, J48, Random Forest and Support Vector Machine classifier was trained and tested using solely these Internet features. A comparison of their accuracy to the 31% accuracy of the ZeroR classifier, which as a rule always predicts the most occurring target class, showed that none of the models performed statistically better. In a second experiment, it was tested whether combining Internet features with financial data increases the accuracy. A financial data mining model was created that approximates the rating model of the ratings in our data set and that uses the same financial data as the rating model. The two best performing financial models were built using the Random Forest and J48 classifiers with an accuracy of 68% and 63% respectively. Adding Internet features to these models gave mixed results with a significant decrease and an insignificant increase respectively. An experimental setup for testing how incorporating uncertainty affects the prediction accuracy of our model is explained. As part of this setup, a search system is described to find candidate results of online information related to a subject and to classify the degree of uncertainty of this online information. It is illustrated how uncertainty can be incorporated into the data mining process." @default.
- W1872153670 created "2016-06-24" @default.
- W1872153670 creator A5077410569 @default.
- W1872153670 date "2015-01-01" @default.
- W1872153670 modified "2023-09-27" @default.
- W1872153670 title "Estimating Creditworthiness using Uncertain Online Data" @default.
- W1872153670 cites W122741734 @default.
- W1872153670 cites W1493762093 @default.
- W1872153670 cites W1532325895 @default.
- W1872153670 cites W1538041071 @default.
- W1872153670 cites W1570448133 @default.
- W1872153670 cites W1573139986 @default.
- W1872153670 cites W1580662492 @default.
- W1872153670 cites W159516710 @default.
- W1872153670 cites W1646278814 @default.
- W1872153670 cites W1647671624 @default.
- W1872153670 cites W168978735 @default.
- W1872153670 cites W17563211 @default.
- W1872153670 cites W1779769545 @default.
- W1872153670 cites W1838076675 @default.
- W1872153670 cites W1880262756 @default.
- W1872153670 cites W1975219037 @default.
- W1872153670 cites W1976339661 @default.
- W1872153670 cites W1978462900 @default.
- W1872153670 cites W1982972748 @default.
- W1872153670 cites W1987094625 @default.
- W1872153670 cites W1995099886 @default.
- W1872153670 cites W2021966435 @default.
- W1872153670 cites W2029138824 @default.
- W1872153670 cites W2034163998 @default.
- W1872153670 cites W2039001182 @default.
- W1872153670 cites W2057900969 @default.
- W1872153670 cites W2077941393 @default.
- W1872153670 cites W2088422262 @default.
- W1872153670 cites W2093149131 @default.
- W1872153670 cites W2102157664 @default.
- W1872153670 cites W2102556224 @default.
- W1872153670 cites W2102943360 @default.
- W1872153670 cites W2103063352 @default.
- W1872153670 cites W2119595472 @default.
- W1872153670 cites W2128711351 @default.
- W1872153670 cites W2140757415 @default.
- W1872153670 cites W2141099517 @default.
- W1872153670 cites W2142023452 @default.
- W1872153670 cites W2144562386 @default.
- W1872153670 cites W2158076717 @default.
- W1872153670 cites W2162073574 @default.
- W1872153670 cites W2163382775 @default.
- W1872153670 cites W2163918411 @default.
- W1872153670 cites W2169004485 @default.
- W1872153670 cites W2338322935 @default.
- W1872153670 cites W2479257769 @default.
- W1872153670 cites W2487770199 @default.
- W1872153670 cites W2498690182 @default.
- W1872153670 cites W2689459492 @default.
- W1872153670 cites W2964675004 @default.
- W1872153670 cites W3121483320 @default.
- W1872153670 cites W3123374861 @default.
- W1872153670 cites W3123906171 @default.
- W1872153670 cites W3123936692 @default.
- W1872153670 cites W32120410 @default.
- W1872153670 cites W37292765 @default.
- W1872153670 cites W561994859 @default.
- W1872153670 cites W564455539 @default.
- W1872153670 cites W68700844 @default.
- W1872153670 cites W746481574 @default.
- W1872153670 cites W79604670 @default.
- W1872153670 cites W845171161 @default.
- W1872153670 cites W938497553 @default.
- W1872153670 cites W96329945 @default.
- W1872153670 cites W12737433 @default.
- W1872153670 hasPublicationYear "2015" @default.
- W1872153670 type Work @default.
- W1872153670 sameAs 1872153670 @default.
- W1872153670 citedByCount "0" @default.
- W1872153670 crossrefType "dissertation" @default.
- W1872153670 hasAuthorship W1872153670A5077410569 @default.
- W1872153670 hasConcept C10138342 @default.
- W1872153670 hasConcept C110875604 @default.
- W1872153670 hasConcept C119857082 @default.
- W1872153670 hasConcept C12267149 @default.
- W1872153670 hasConcept C124101348 @default.
- W1872153670 hasConcept C136764020 @default.
- W1872153670 hasConcept C144133560 @default.
- W1872153670 hasConcept C154945302 @default.
- W1872153670 hasConcept C169258074 @default.
- W1872153670 hasConcept C2777764128 @default.
- W1872153670 hasConcept C41008148 @default.
- W1872153670 hasConcept C52001869 @default.
- W1872153670 hasConcept C52003472 @default.
- W1872153670 hasConcept C95623464 @default.
- W1872153670 hasConceptScore W1872153670C10138342 @default.
- W1872153670 hasConceptScore W1872153670C110875604 @default.
- W1872153670 hasConceptScore W1872153670C119857082 @default.
- W1872153670 hasConceptScore W1872153670C12267149 @default.
- W1872153670 hasConceptScore W1872153670C124101348 @default.
- W1872153670 hasConceptScore W1872153670C136764020 @default.
- W1872153670 hasConceptScore W1872153670C144133560 @default.
- W1872153670 hasConceptScore W1872153670C154945302 @default.
- W1872153670 hasConceptScore W1872153670C169258074 @default.