Matches in SemOpenAlex for { <https://semopenalex.org/work/W1872431128> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W1872431128 abstract "Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear debris analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self-organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear debris. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics. ICROSCOPIC applications have been one of the important areas in the field of automation for on- line/off-line visual inspection systems in industry and for long-term availability of inventory in warehouses. These systems include analysis of microscopic wear debris. Any change in the steady state operation of the machine creates a change in the normal wear mechanism. This change once transported by a lubricant from wear sites carries important information relating to the condition of engines and other machinery. Researchers have used this information to diagnose wear-producing modes and thus attempt to predict wear failures in machines (1-2). For the purpose of objective diagnosis, the identification and analysis of these wear debris have been reported in literature using various automation techniques. The interested reader is referred to the work of authors in (3-5) for further study. The aim of the overall research has been to develop an image analysis and in some cases knowledge based system to classify wear debris for the objective under study. The authors in (6) have discussed an intelligent expert system via Internet using combination of an expert system and a neural network. The respective authors have only discussed classifications where desired ones are known and corresponding mapping is" @default.
- W1872431128 created "2016-06-24" @default.
- W1872431128 creator A5030113928 @default.
- W1872431128 creator A5077673694 @default.
- W1872431128 date "2007-10-22" @default.
- W1872431128 modified "2023-10-16" @default.
- W1872431128 title "Building Relationship Network for Machine Analysis from Wear Debris Measurements" @default.
- W1872431128 cites W1555533122 @default.
- W1872431128 cites W1560770548 @default.
- W1872431128 cites W1988912112 @default.
- W1872431128 cites W2007579415 @default.
- W1872431128 cites W2011988161 @default.
- W1872431128 cites W2029382559 @default.
- W1872431128 cites W2034971879 @default.
- W1872431128 cites W2044184083 @default.
- W1872431128 cites W2052235761 @default.
- W1872431128 cites W2090203769 @default.
- W1872431128 cites W2117409495 @default.
- W1872431128 cites W2466104903 @default.
- W1872431128 cites W3128014929 @default.
- W1872431128 doi "https://doi.org/10.5281/zenodo.1327616" @default.
- W1872431128 hasPublicationYear "2007" @default.
- W1872431128 type Work @default.
- W1872431128 sameAs 1872431128 @default.
- W1872431128 citedByCount "2" @default.
- W1872431128 countsByYear W18724311282013 @default.
- W1872431128 crossrefType "journal-article" @default.
- W1872431128 hasAuthorship W1872431128A5030113928 @default.
- W1872431128 hasAuthorship W1872431128A5077673694 @default.
- W1872431128 hasBestOaLocation W18724311281 @default.
- W1872431128 hasConcept C111368507 @default.
- W1872431128 hasConcept C127313418 @default.
- W1872431128 hasConcept C127413603 @default.
- W1872431128 hasConcept C2776023875 @default.
- W1872431128 hasConcept C39432304 @default.
- W1872431128 hasConcept C41008148 @default.
- W1872431128 hasConcept C77595967 @default.
- W1872431128 hasConceptScore W1872431128C111368507 @default.
- W1872431128 hasConceptScore W1872431128C127313418 @default.
- W1872431128 hasConceptScore W1872431128C127413603 @default.
- W1872431128 hasConceptScore W1872431128C2776023875 @default.
- W1872431128 hasConceptScore W1872431128C39432304 @default.
- W1872431128 hasConceptScore W1872431128C41008148 @default.
- W1872431128 hasConceptScore W1872431128C77595967 @default.
- W1872431128 hasLocation W18724311281 @default.
- W1872431128 hasOpenAccess W1872431128 @default.
- W1872431128 hasPrimaryLocation W18724311281 @default.
- W1872431128 hasRelatedWork W2085995069 @default.
- W1872431128 hasRelatedWork W2327053795 @default.
- W1872431128 hasRelatedWork W2771390796 @default.
- W1872431128 hasRelatedWork W2790695057 @default.
- W1872431128 hasRelatedWork W2899084033 @default.
- W1872431128 hasRelatedWork W2947038686 @default.
- W1872431128 hasRelatedWork W2990128675 @default.
- W1872431128 hasRelatedWork W3211364648 @default.
- W1872431128 hasRelatedWork W4210518969 @default.
- W1872431128 hasRelatedWork W3145461486 @default.
- W1872431128 isParatext "false" @default.
- W1872431128 isRetracted "false" @default.
- W1872431128 magId "1872431128" @default.
- W1872431128 workType "article" @default.