Matches in SemOpenAlex for { <https://semopenalex.org/work/W1873006238> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1873006238 abstract "Biology as a scientific discipline is becoming evermore quantitative as tools become available to probe living systems on every scale from the macro to the micro and now even to the nanoscale. In quantitative biology the challenge is to understand the living world in an in vivo context, where it is often difficult for simple theoretical models to connect with the full richness and complexity of the observed data. Computational models and simulations offer a way to bridge the gap between simple theoretical models and real biological systems; towards that aspiration are presented in this thesis three case studies in applying computational models that may give insight into native biological structures. The first is concerned with soluble proteins; proteins, like DNA, are linear polymers written in a twenty-letter language of amino acids. Despite the astronomical number of possible proteins sequences, a great amount of similarity is observed among the folded structures of globular proteins. One useful way of discovering similar sequences is to align their sequences, as done e.g. by the popular BLAST program. By clustering together amino acids and reducing the alphabet that proteins are written in to fewer than twenty letters, we find that pairwise sequence alignments are actually more sensitive to proteins with similar structures. The second case study is concerned with the measurement of forces applied to a membrane. We demonstrate a general method for extracting the forces applied to a fluid lipid bilayer of arbitrary shape and show that the subpiconewton forces applied by optical tweezers to vesicles can be accurately measured in this way. In the third and final case study we examine the forces between proteins in a lipid bilayer membrane. Due to the bending of the membrane surrounding them, such proteins feel mutually attractive forces which can help them to self-organize and act in concert. These finding are relevant at the areal densities estimated for membrane proteins such as the MscL mechanosensitive channel. The findings of the analytical studies were confirmed by a Monte Carlo Markov Chain simulation using the fully two-dimensional potentials between two model proteins in a membrane. Living systems present us with beautiful and intricate structures, from the helices and sheets of a folded protein to the dynamic morphology of cellular organelles and the self-organization of proteins in a biomembrane and a synergy of theoretical and it in silico approaches should enable us to build and refine models of in vivo biological data." @default.
- W1873006238 created "2016-06-24" @default.
- W1873006238 creator A5044282262 @default.
- W1873006238 date "2008-01-01" @default.
- W1873006238 modified "2023-09-28" @default.
- W1873006238 title "A random walk in physical biology" @default.
- W1873006238 doi "https://doi.org/10.7907/x00x-vc27." @default.
- W1873006238 hasPublicationYear "2008" @default.
- W1873006238 type Work @default.
- W1873006238 sameAs 1873006238 @default.
- W1873006238 citedByCount "1" @default.
- W1873006238 countsByYear W18730062382019 @default.
- W1873006238 crossrefType "dissertation" @default.
- W1873006238 hasAuthorship W1873006238A5044282262 @default.
- W1873006238 hasConcept C111472728 @default.
- W1873006238 hasConcept C138885662 @default.
- W1873006238 hasConcept C151730666 @default.
- W1873006238 hasConcept C154945302 @default.
- W1873006238 hasConcept C184898388 @default.
- W1873006238 hasConcept C2779343474 @default.
- W1873006238 hasConcept C2780586882 @default.
- W1873006238 hasConcept C41008148 @default.
- W1873006238 hasConcept C60644358 @default.
- W1873006238 hasConcept C70721500 @default.
- W1873006238 hasConcept C73555534 @default.
- W1873006238 hasConcept C80444323 @default.
- W1873006238 hasConcept C86803240 @default.
- W1873006238 hasConceptScore W1873006238C111472728 @default.
- W1873006238 hasConceptScore W1873006238C138885662 @default.
- W1873006238 hasConceptScore W1873006238C151730666 @default.
- W1873006238 hasConceptScore W1873006238C154945302 @default.
- W1873006238 hasConceptScore W1873006238C184898388 @default.
- W1873006238 hasConceptScore W1873006238C2779343474 @default.
- W1873006238 hasConceptScore W1873006238C2780586882 @default.
- W1873006238 hasConceptScore W1873006238C41008148 @default.
- W1873006238 hasConceptScore W1873006238C60644358 @default.
- W1873006238 hasConceptScore W1873006238C70721500 @default.
- W1873006238 hasConceptScore W1873006238C73555534 @default.
- W1873006238 hasConceptScore W1873006238C80444323 @default.
- W1873006238 hasConceptScore W1873006238C86803240 @default.
- W1873006238 hasLocation W18730062381 @default.
- W1873006238 hasOpenAccess W1873006238 @default.
- W1873006238 hasPrimaryLocation W18730062381 @default.
- W1873006238 hasRelatedWork W1586043875 @default.
- W1873006238 hasRelatedWork W1866462462 @default.
- W1873006238 hasRelatedWork W1972013995 @default.
- W1873006238 hasRelatedWork W2035956048 @default.
- W1873006238 hasRelatedWork W2036847257 @default.
- W1873006238 hasRelatedWork W2044118984 @default.
- W1873006238 hasRelatedWork W2087791035 @default.
- W1873006238 hasRelatedWork W2122451032 @default.
- W1873006238 hasRelatedWork W2501404889 @default.
- W1873006238 hasRelatedWork W2531950497 @default.
- W1873006238 hasRelatedWork W2735792467 @default.
- W1873006238 hasRelatedWork W2766496640 @default.
- W1873006238 hasRelatedWork W2952215697 @default.
- W1873006238 hasRelatedWork W2977306021 @default.
- W1873006238 hasRelatedWork W3010097954 @default.
- W1873006238 hasRelatedWork W3015963437 @default.
- W1873006238 hasRelatedWork W3097547243 @default.
- W1873006238 hasRelatedWork W3133807421 @default.
- W1873006238 hasRelatedWork W3172747357 @default.
- W1873006238 hasRelatedWork W2290071695 @default.
- W1873006238 isParatext "false" @default.
- W1873006238 isRetracted "false" @default.
- W1873006238 magId "1873006238" @default.
- W1873006238 workType "dissertation" @default.