Matches in SemOpenAlex for { <https://semopenalex.org/work/W1874498466> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1874498466 endingPage "72" @default.
- W1874498466 startingPage "63" @default.
- W1874498466 abstract "Single-hidden layer feedforward neural networks with randomly fixed hidden neurons (RHN-SLFNs) have been shown, both theoretically and experimentally, to be fast and accurate. Besides, it is well known that deep architectures can find higher-level representations, thus can potentially capture relevant higher-level abstractions. But most of current deep learning methods require a long time to solve a non-convex optimization problem. In this paper, we propose a stacked deep neural network, St-URHN-SLFNs, via unsupervised RHN-SLFNs according to stacked generalization philosophy to deal with unsupervised problems. Empirical study on a wide range of data sets demonstrates that the proposed algorithm outperforms the state-of-the-art unsupervised algorithms in terms of accuracy. On the computational effectiveness, the proposed algorithm runs much faster than other deep learning methods, i.e. deep autoencoder (DA) and stacked autoencoder (SAE), and little slower than other methods." @default.
- W1874498466 created "2016-06-24" @default.
- W1874498466 creator A5002750889 @default.
- W1874498466 creator A5024880206 @default.
- W1874498466 creator A5035602823 @default.
- W1874498466 date "2016-01-01" @default.
- W1874498466 modified "2023-10-16" @default.
- W1874498466 title "A new deep neural network based on a stack of single-hidden-layer feedforward neural networks with randomly fixed hidden neurons" @default.
- W1874498466 cites W1988115241 @default.
- W1874498466 cites W1996640396 @default.
- W1874498466 cites W2031878488 @default.
- W1874498466 cites W2097308346 @default.
- W1874498466 cites W2098290011 @default.
- W1874498466 cites W2100495367 @default.
- W1874498466 cites W2103560185 @default.
- W1874498466 cites W2110798204 @default.
- W1874498466 cites W2113442785 @default.
- W1874498466 cites W2125874614 @default.
- W1874498466 cites W2136922672 @default.
- W1874498466 cites W2148029428 @default.
- W1874498466 cites W2155910151 @default.
- W1874498466 doi "https://doi.org/10.1016/j.neucom.2015.06.017" @default.
- W1874498466 hasPublicationYear "2016" @default.
- W1874498466 type Work @default.
- W1874498466 sameAs 1874498466 @default.
- W1874498466 citedByCount "24" @default.
- W1874498466 countsByYear W18744984662016 @default.
- W1874498466 countsByYear W18744984662017 @default.
- W1874498466 countsByYear W18744984662018 @default.
- W1874498466 countsByYear W18744984662019 @default.
- W1874498466 countsByYear W18744984662020 @default.
- W1874498466 countsByYear W18744984662022 @default.
- W1874498466 countsByYear W18744984662023 @default.
- W1874498466 crossrefType "journal-article" @default.
- W1874498466 hasAuthorship W1874498466A5002750889 @default.
- W1874498466 hasAuthorship W1874498466A5024880206 @default.
- W1874498466 hasAuthorship W1874498466A5035602823 @default.
- W1874498466 hasConcept C101738243 @default.
- W1874498466 hasConcept C108583219 @default.
- W1874498466 hasConcept C119857082 @default.
- W1874498466 hasConcept C127413603 @default.
- W1874498466 hasConcept C133731056 @default.
- W1874498466 hasConcept C134306372 @default.
- W1874498466 hasConcept C153180895 @default.
- W1874498466 hasConcept C154945302 @default.
- W1874498466 hasConcept C177148314 @default.
- W1874498466 hasConcept C178790620 @default.
- W1874498466 hasConcept C185592680 @default.
- W1874498466 hasConcept C2779227376 @default.
- W1874498466 hasConcept C2984842247 @default.
- W1874498466 hasConcept C33923547 @default.
- W1874498466 hasConcept C38858127 @default.
- W1874498466 hasConcept C41008148 @default.
- W1874498466 hasConcept C47702885 @default.
- W1874498466 hasConcept C50644808 @default.
- W1874498466 hasConceptScore W1874498466C101738243 @default.
- W1874498466 hasConceptScore W1874498466C108583219 @default.
- W1874498466 hasConceptScore W1874498466C119857082 @default.
- W1874498466 hasConceptScore W1874498466C127413603 @default.
- W1874498466 hasConceptScore W1874498466C133731056 @default.
- W1874498466 hasConceptScore W1874498466C134306372 @default.
- W1874498466 hasConceptScore W1874498466C153180895 @default.
- W1874498466 hasConceptScore W1874498466C154945302 @default.
- W1874498466 hasConceptScore W1874498466C177148314 @default.
- W1874498466 hasConceptScore W1874498466C178790620 @default.
- W1874498466 hasConceptScore W1874498466C185592680 @default.
- W1874498466 hasConceptScore W1874498466C2779227376 @default.
- W1874498466 hasConceptScore W1874498466C2984842247 @default.
- W1874498466 hasConceptScore W1874498466C33923547 @default.
- W1874498466 hasConceptScore W1874498466C38858127 @default.
- W1874498466 hasConceptScore W1874498466C41008148 @default.
- W1874498466 hasConceptScore W1874498466C47702885 @default.
- W1874498466 hasConceptScore W1874498466C50644808 @default.
- W1874498466 hasFunder F4320321001 @default.
- W1874498466 hasFunder F4320335777 @default.
- W1874498466 hasFunder F4320336024 @default.
- W1874498466 hasLocation W18744984661 @default.
- W1874498466 hasOpenAccess W1874498466 @default.
- W1874498466 hasPrimaryLocation W18744984661 @default.
- W1874498466 hasRelatedWork W1874498466 @default.
- W1874498466 hasRelatedWork W2669956259 @default.
- W1874498466 hasRelatedWork W2674501427 @default.
- W1874498466 hasRelatedWork W2897995864 @default.
- W1874498466 hasRelatedWork W2939353110 @default.
- W1874498466 hasRelatedWork W2998168123 @default.
- W1874498466 hasRelatedWork W3171155066 @default.
- W1874498466 hasRelatedWork W4210622432 @default.
- W1874498466 hasRelatedWork W4287995534 @default.
- W1874498466 hasRelatedWork W4380075502 @default.
- W1874498466 hasVolume "171" @default.
- W1874498466 isParatext "false" @default.
- W1874498466 isRetracted "false" @default.
- W1874498466 magId "1874498466" @default.
- W1874498466 workType "article" @default.