Matches in SemOpenAlex for { <https://semopenalex.org/work/W1874581008> ?p ?o ?g. }
- W1874581008 endingPage "73" @default.
- W1874581008 startingPage "64" @default.
- W1874581008 abstract "In recent years, non-parametric methods utilizing random walks on graphs have been used to solve a wide range of machine learning problems, but in their simplest form they do not scale well due to the quadratic complexity. In this paper, a new dual-tree based variational approach for approximating the transition matrix and efficiently performing the random walk is proposed. The approach exploits a connection between kernel density estimation, mixture modeling, and random walk on graphs in an optimization of the transition matrix for the data graph that ties together edge transitions probabilities that are similar. Compared to the de facto standard approximation method based on k-nearest-neighbors, we demonstrate order of magnitudes speedup without sacrificing accuracy for Label Propagation tasks on benchmark data sets in semi-supervised learning." @default.
- W1874581008 created "2016-06-24" @default.
- W1874581008 creator A5012461386 @default.
- W1874581008 creator A5044581608 @default.
- W1874581008 creator A5062593241 @default.
- W1874581008 date "2012-08-14" @default.
- W1874581008 modified "2023-09-26" @default.
- W1874581008 title "Variational dual-tree framework for large-scale transition matrix approximation" @default.
- W1874581008 cites W1490883626 @default.
- W1874581008 cites W1497443639 @default.
- W1874581008 cites W1538880315 @default.
- W1874581008 cites W1558808826 @default.
- W1874581008 cites W1563653928 @default.
- W1874581008 cites W1913030240 @default.
- W1874581008 cites W2073614810 @default.
- W1874581008 cites W2103755321 @default.
- W1874581008 cites W2104290444 @default.
- W1874581008 cites W2105873898 @default.
- W1874581008 cites W2107184316 @default.
- W1874581008 cites W2117684310 @default.
- W1874581008 cites W2122457239 @default.
- W1874581008 cites W2132146097 @default.
- W1874581008 cites W2132824401 @default.
- W1874581008 cites W2132914434 @default.
- W1874581008 cites W2133296809 @default.
- W1874581008 cites W2138064700 @default.
- W1874581008 cites W2141923507 @default.
- W1874581008 cites W2146558186 @default.
- W1874581008 cites W2149164782 @default.
- W1874581008 cites W2154455818 @default.
- W1874581008 cites W2155161883 @default.
- W1874581008 hasPublicationYear "2012" @default.
- W1874581008 type Work @default.
- W1874581008 sameAs 1874581008 @default.
- W1874581008 citedByCount "3" @default.
- W1874581008 countsByYear W18745810082013 @default.
- W1874581008 countsByYear W18745810082014 @default.
- W1874581008 countsByYear W18745810082015 @default.
- W1874581008 crossrefType "proceedings-article" @default.
- W1874581008 hasAuthorship W1874581008A5012461386 @default.
- W1874581008 hasAuthorship W1874581008A5044581608 @default.
- W1874581008 hasAuthorship W1874581008A5062593241 @default.
- W1874581008 hasConcept C105795698 @default.
- W1874581008 hasConcept C111919701 @default.
- W1874581008 hasConcept C11413529 @default.
- W1874581008 hasConcept C118615104 @default.
- W1874581008 hasConcept C119857082 @default.
- W1874581008 hasConcept C121194460 @default.
- W1874581008 hasConcept C126255220 @default.
- W1874581008 hasConcept C129844170 @default.
- W1874581008 hasConcept C152948882 @default.
- W1874581008 hasConcept C2524010 @default.
- W1874581008 hasConcept C33923547 @default.
- W1874581008 hasConcept C41008148 @default.
- W1874581008 hasConcept C49555168 @default.
- W1874581008 hasConcept C57273362 @default.
- W1874581008 hasConcept C68339613 @default.
- W1874581008 hasConcept C74193536 @default.
- W1874581008 hasConcept C80444323 @default.
- W1874581008 hasConcept C98763669 @default.
- W1874581008 hasConceptScore W1874581008C105795698 @default.
- W1874581008 hasConceptScore W1874581008C111919701 @default.
- W1874581008 hasConceptScore W1874581008C11413529 @default.
- W1874581008 hasConceptScore W1874581008C118615104 @default.
- W1874581008 hasConceptScore W1874581008C119857082 @default.
- W1874581008 hasConceptScore W1874581008C121194460 @default.
- W1874581008 hasConceptScore W1874581008C126255220 @default.
- W1874581008 hasConceptScore W1874581008C129844170 @default.
- W1874581008 hasConceptScore W1874581008C152948882 @default.
- W1874581008 hasConceptScore W1874581008C2524010 @default.
- W1874581008 hasConceptScore W1874581008C33923547 @default.
- W1874581008 hasConceptScore W1874581008C41008148 @default.
- W1874581008 hasConceptScore W1874581008C49555168 @default.
- W1874581008 hasConceptScore W1874581008C57273362 @default.
- W1874581008 hasConceptScore W1874581008C68339613 @default.
- W1874581008 hasConceptScore W1874581008C74193536 @default.
- W1874581008 hasConceptScore W1874581008C80444323 @default.
- W1874581008 hasConceptScore W1874581008C98763669 @default.
- W1874581008 hasLocation W18745810081 @default.
- W1874581008 hasOpenAccess W1874581008 @default.
- W1874581008 hasPrimaryLocation W18745810081 @default.
- W1874581008 hasRelatedWork W188345382 @default.
- W1874581008 hasRelatedWork W1916718250 @default.
- W1874581008 hasRelatedWork W2058972116 @default.
- W1874581008 hasRelatedWork W2108829665 @default.
- W1874581008 hasRelatedWork W2133095386 @default.
- W1874581008 hasRelatedWork W2298972907 @default.
- W1874581008 hasRelatedWork W2318619298 @default.
- W1874581008 hasRelatedWork W2600013268 @default.
- W1874581008 hasRelatedWork W2766726452 @default.
- W1874581008 hasRelatedWork W2770833882 @default.
- W1874581008 hasRelatedWork W2790068678 @default.
- W1874581008 hasRelatedWork W2953177096 @default.
- W1874581008 hasRelatedWork W2955966953 @default.
- W1874581008 hasRelatedWork W2963141464 @default.
- W1874581008 hasRelatedWork W3011579450 @default.
- W1874581008 hasRelatedWork W3032400304 @default.
- W1874581008 hasRelatedWork W3099170626 @default.