Matches in SemOpenAlex for { <https://semopenalex.org/work/W1875200217> ?p ?o ?g. }
- W1875200217 endingPage "372" @default.
- W1875200217 startingPage "355" @default.
- W1875200217 abstract "A kinetic equation for the collisional evolution of stable, bound, self-gravitating and slowly relaxing systems is established, which is valid when the number of constituents is very large. It accounts for the detailed dynamics and self-consistent dressing by collective gravitational interaction of the colliding particles, for the system's inhomogeneity and for different constituents' masses. It describes the coupled evolution of collisionally interacting populations, such as stars in a thick disc and the molecular clouds off which they scatter. The kinetic equation derives from the BBGKY hierarchy in the limit of weak, but non-vanishing, binary correlations, an approximation which is well justified for large stellar systems. The evolution of the 1-body distribution function is described in action–angle space. The collective response is calculated using a biorthogonal basis of pairs of density–potential functions. The collision operators are expressed in terms of the collective response function allowed by the existing distribution functions at any given time and involve particles in resonant motion. These equations are shown to satisfy an H theorem. Because of the inhomogeneous character of the system, the relaxation causes the potential as well as the orbits of the particles to secularly evolve. The changing orbits also cause the angle Fourier coefficients of the basis potentials to change with time. We derive the set of equations which describes this coupled evolution of distribution functions, potential and basis Fourier coefficients for spherically symmetric systems. In the homogeneous limit, which sacrifices the description of the evolution of the spatial structure of the system but retains the effect of collective gravitational dressing, the kinetic equation reduces to a form similar to the Balescu–Lenard equation of plasma physics." @default.
- W1875200217 created "2016-06-24" @default.
- W1875200217 creator A5061554069 @default.
- W1875200217 date "2010-07-15" @default.
- W1875200217 modified "2023-09-28" @default.
- W1875200217 title "A Balescu-Lenard-type kinetic equation for the collisional evolution of stable self-gravitating systems" @default.
- W1875200217 cites W1968638976 @default.
- W1875200217 cites W1978862360 @default.
- W1875200217 cites W1982192653 @default.
- W1875200217 cites W1990785584 @default.
- W1875200217 cites W1993452696 @default.
- W1875200217 cites W1998904626 @default.
- W1875200217 cites W2000443462 @default.
- W1875200217 cites W2016848144 @default.
- W1875200217 cites W2020497558 @default.
- W1875200217 cites W2020729140 @default.
- W1875200217 cites W2025597634 @default.
- W1875200217 cites W2026545869 @default.
- W1875200217 cites W2030140432 @default.
- W1875200217 cites W2030520011 @default.
- W1875200217 cites W2032357316 @default.
- W1875200217 cites W2052986856 @default.
- W1875200217 cites W2062844210 @default.
- W1875200217 cites W2063766043 @default.
- W1875200217 cites W2075379086 @default.
- W1875200217 cites W2077863938 @default.
- W1875200217 cites W2088831972 @default.
- W1875200217 cites W2093436873 @default.
- W1875200217 cites W2126094879 @default.
- W1875200217 cites W2136120905 @default.
- W1875200217 cites W2161712129 @default.
- W1875200217 cites W2169679061 @default.
- W1875200217 cites W3098853644 @default.
- W1875200217 cites W3099312230 @default.
- W1875200217 cites W3100892722 @default.
- W1875200217 cites W3101118352 @default.
- W1875200217 cites W3101608564 @default.
- W1875200217 cites W3104400914 @default.
- W1875200217 cites W3105406262 @default.
- W1875200217 doi "https://doi.org/10.1111/j.1365-2966.2010.16899.x" @default.
- W1875200217 hasPublicationYear "2010" @default.
- W1875200217 type Work @default.
- W1875200217 sameAs 1875200217 @default.
- W1875200217 citedByCount "72" @default.
- W1875200217 countsByYear W18752002172012 @default.
- W1875200217 countsByYear W18752002172013 @default.
- W1875200217 countsByYear W18752002172014 @default.
- W1875200217 countsByYear W18752002172015 @default.
- W1875200217 countsByYear W18752002172016 @default.
- W1875200217 countsByYear W18752002172017 @default.
- W1875200217 countsByYear W18752002172018 @default.
- W1875200217 countsByYear W18752002172019 @default.
- W1875200217 countsByYear W18752002172020 @default.
- W1875200217 countsByYear W18752002172021 @default.
- W1875200217 countsByYear W18752002172022 @default.
- W1875200217 countsByYear W18752002172023 @default.
- W1875200217 crossrefType "journal-article" @default.
- W1875200217 hasAuthorship W1875200217A5061554069 @default.
- W1875200217 hasBestOaLocation W18752002171 @default.
- W1875200217 hasConcept C106553664 @default.
- W1875200217 hasConcept C121332964 @default.
- W1875200217 hasConcept C121864883 @default.
- W1875200217 hasConcept C124017977 @default.
- W1875200217 hasConcept C12426560 @default.
- W1875200217 hasConcept C127090403 @default.
- W1875200217 hasConcept C134306372 @default.
- W1875200217 hasConcept C135889238 @default.
- W1875200217 hasConcept C151201525 @default.
- W1875200217 hasConcept C15744967 @default.
- W1875200217 hasConcept C167312068 @default.
- W1875200217 hasConcept C186603090 @default.
- W1875200217 hasConcept C2524010 @default.
- W1875200217 hasConcept C2776029896 @default.
- W1875200217 hasConcept C33923547 @default.
- W1875200217 hasConcept C62520636 @default.
- W1875200217 hasConcept C74650414 @default.
- W1875200217 hasConcept C77805123 @default.
- W1875200217 hasConceptScore W1875200217C106553664 @default.
- W1875200217 hasConceptScore W1875200217C121332964 @default.
- W1875200217 hasConceptScore W1875200217C121864883 @default.
- W1875200217 hasConceptScore W1875200217C124017977 @default.
- W1875200217 hasConceptScore W1875200217C12426560 @default.
- W1875200217 hasConceptScore W1875200217C127090403 @default.
- W1875200217 hasConceptScore W1875200217C134306372 @default.
- W1875200217 hasConceptScore W1875200217C135889238 @default.
- W1875200217 hasConceptScore W1875200217C151201525 @default.
- W1875200217 hasConceptScore W1875200217C15744967 @default.
- W1875200217 hasConceptScore W1875200217C167312068 @default.
- W1875200217 hasConceptScore W1875200217C186603090 @default.
- W1875200217 hasConceptScore W1875200217C2524010 @default.
- W1875200217 hasConceptScore W1875200217C2776029896 @default.
- W1875200217 hasConceptScore W1875200217C33923547 @default.
- W1875200217 hasConceptScore W1875200217C62520636 @default.
- W1875200217 hasConceptScore W1875200217C74650414 @default.
- W1875200217 hasConceptScore W1875200217C77805123 @default.
- W1875200217 hasIssue "1" @default.
- W1875200217 hasLocation W18752002171 @default.
- W1875200217 hasOpenAccess W1875200217 @default.