Matches in SemOpenAlex for { <https://semopenalex.org/work/W1875341788> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1875341788 startingPage "0" @default.
- W1875341788 abstract "We consider the single-machine scheduling problem of minimizing the number of late jobs. We omit here one of the standard assumptions in scheduling theory, which is that the processing times are deterministic. Our main message is that in a number of cases the problem with stochastic processing times can be reformulated as a deterministic problem, which is solvable in polynomial time through the famous algorithm by Moore and Hodgson. We first review and reinterpret this algorithm as a dynamic programming algorithm. We then consider four problem classes with stochastic processing times. The first one has equally disturbed processing times, that is, the processing time consist of a deterministic part and a random component that is independently, identically distributed for each job. The jobs in the other three classes have processing times that follow: (i) A gamma distribution with shape parameter pj and scale parameter , where is common to all jobs; (ii) A negative binomial distribution with parameters pj and r, where r is the same for each job; (iii) A normal distribution with parameters pj and 2 j. In this scheduling environment, the completion times will be stochastic variables as well. Instead of looking at the expected number of on time jobs, we introduce the concept of a job being ‘stochastically on time’, that is, we qualify a job as being on time if the probability that it is completed by the deterministic due date is at least equal to a certain given minimum success probability. We show that in case of equally disturbed processing times we can solve the problem in O(nlogn) time through the algorithm by Moore and Hodgson, if we make the additional assumption that the due dates and the minimum success probabilities are agreeable, which encompasses the case of equal minimum success probabilities. The problems with processing times following a gamma or a negative binomial distribution can be solved in O(nlogn) time by Moore and Hodgson’s algorithm, even if the minimum success probabilities are arbitrary; based on these two examples, we characterize the properties that a distribution must possess to allow such a result. For the case with normally distributed processing times we need the additional assumption that the due dates and minimum success probabilities are agreeable. Under this assumption we present a pseudo-polynomial time algorithm, and we prove that this is the best we can hope for by establishing weak NPhardness. We also show that the problem of minimizing the weighted number of late jobs can be solved by an extension of the dynamic programming algorithm in all four cases; this takes pseudo-polynomial time. We further indicate how the problem of maximizing the expected number of on time jobs (with respect to the standard definition) can be tackled if we add the constraint that the on time jobs are sequenced in a given order." @default.
- W1875341788 created "2016-06-24" @default.
- W1875341788 creator A5009631619 @default.
- W1875341788 creator A5010610447 @default.
- W1875341788 date "2005-01-01" @default.
- W1875341788 modified "2023-09-25" @default.
- W1875341788 title "Getting rid of stochasticity: applicable sometimes." @default.
- W1875341788 cites W1588284186 @default.
- W1875341788 cites W2010484711 @default.
- W1875341788 cites W2107216979 @default.
- W1875341788 cites W2115299891 @default.
- W1875341788 cites W21201060 @default.
- W1875341788 cites W2140481308 @default.
- W1875341788 cites W2401610261 @default.
- W1875341788 cites W3044911583 @default.
- W1875341788 hasPublicationYear "2005" @default.
- W1875341788 type Work @default.
- W1875341788 sameAs 1875341788 @default.
- W1875341788 citedByCount "0" @default.
- W1875341788 crossrefType "proceedings-article" @default.
- W1875341788 hasAuthorship W1875341788A5009631619 @default.
- W1875341788 hasAuthorship W1875341788A5010610447 @default.
- W1875341788 hasConcept C105795698 @default.
- W1875341788 hasConcept C11413529 @default.
- W1875341788 hasConcept C122123141 @default.
- W1875341788 hasConcept C126255220 @default.
- W1875341788 hasConcept C141513077 @default.
- W1875341788 hasConcept C149441793 @default.
- W1875341788 hasConcept C206729178 @default.
- W1875341788 hasConcept C311688 @default.
- W1875341788 hasConcept C33923547 @default.
- W1875341788 hasConcept C41008148 @default.
- W1875341788 hasConcept C8272713 @default.
- W1875341788 hasConceptScore W1875341788C105795698 @default.
- W1875341788 hasConceptScore W1875341788C11413529 @default.
- W1875341788 hasConceptScore W1875341788C122123141 @default.
- W1875341788 hasConceptScore W1875341788C126255220 @default.
- W1875341788 hasConceptScore W1875341788C141513077 @default.
- W1875341788 hasConceptScore W1875341788C149441793 @default.
- W1875341788 hasConceptScore W1875341788C206729178 @default.
- W1875341788 hasConceptScore W1875341788C311688 @default.
- W1875341788 hasConceptScore W1875341788C33923547 @default.
- W1875341788 hasConceptScore W1875341788C41008148 @default.
- W1875341788 hasConceptScore W1875341788C8272713 @default.
- W1875341788 hasLocation W18753417881 @default.
- W1875341788 hasOpenAccess W1875341788 @default.
- W1875341788 hasPrimaryLocation W18753417881 @default.
- W1875341788 hasRelatedWork W1504855864 @default.
- W1875341788 hasRelatedWork W1587676457 @default.
- W1875341788 hasRelatedWork W1797146219 @default.
- W1875341788 hasRelatedWork W1976534804 @default.
- W1875341788 hasRelatedWork W1996008776 @default.
- W1875341788 hasRelatedWork W2019293698 @default.
- W1875341788 hasRelatedWork W2045034698 @default.
- W1875341788 hasRelatedWork W2090495106 @default.
- W1875341788 hasRelatedWork W2098959416 @default.
- W1875341788 hasRelatedWork W2107205433 @default.
- W1875341788 hasRelatedWork W2127142864 @default.
- W1875341788 hasRelatedWork W2186806673 @default.
- W1875341788 hasRelatedWork W2294069062 @default.
- W1875341788 hasRelatedWork W2523620715 @default.
- W1875341788 hasRelatedWork W2587926306 @default.
- W1875341788 hasRelatedWork W2755811056 @default.
- W1875341788 hasRelatedWork W2943118652 @default.
- W1875341788 hasRelatedWork W2951612254 @default.
- W1875341788 hasRelatedWork W3164132588 @default.
- W1875341788 hasRelatedWork W3171663264 @default.
- W1875341788 isParatext "false" @default.
- W1875341788 isRetracted "false" @default.
- W1875341788 magId "1875341788" @default.
- W1875341788 workType "article" @default.