Matches in SemOpenAlex for { <https://semopenalex.org/work/W1876352197> ?p ?o ?g. }
- W1876352197 endingPage "1138" @default.
- W1876352197 startingPage "1129" @default.
- W1876352197 abstract "Abstract In this article, we utilize stochastic search variable selection methodology to develop a Bayesian method for identifying multiple quantitative trait loci (QTL) for complex traits in experimental designs. The proposed procedure entails embedding multiple regression in a hierarchical normal mixture model, where latent indicators for all markers are used to identify the multiple markers. The markers with significant effects can be identified as those with higher posterior probability included in the model. A simple and easy-to-use Gibbs sampler is employed to generate samples from the joint posterior distribution of all unknowns including the latent indicators, genetic effects for all markers, and other model parameters. The proposed method was evaluated using simulated data and illustrated using a real data set. The results demonstrate that the proposed method works well under typical situations of most QTL studies in terms of number of markers and marker density." @default.
- W1876352197 created "2016-06-24" @default.
- W1876352197 creator A5062622249 @default.
- W1876352197 creator A5086059667 @default.
- W1876352197 creator A5090105154 @default.
- W1876352197 date "2003-07-01" @default.
- W1876352197 modified "2023-10-12" @default.
- W1876352197 title "Stochastic Search Variable Selection for Identifying Multiple Quantitative Trait Loci" @default.
- W1876352197 cites W1541473379 @default.
- W1876352197 cites W1864995317 @default.
- W1876352197 cites W1890187709 @default.
- W1876352197 cites W1900332431 @default.
- W1876352197 cites W1914121885 @default.
- W1876352197 cites W1928998639 @default.
- W1876352197 cites W1936555975 @default.
- W1876352197 cites W1943152218 @default.
- W1876352197 cites W1963383323 @default.
- W1876352197 cites W2003284105 @default.
- W1876352197 cites W2007069447 @default.
- W1876352197 cites W2012248354 @default.
- W1876352197 cites W2034608799 @default.
- W1876352197 cites W2053114866 @default.
- W1876352197 cites W2059520958 @default.
- W1876352197 cites W2066967522 @default.
- W1876352197 cites W2073654881 @default.
- W1876352197 cites W2097758663 @default.
- W1876352197 cites W2108076619 @default.
- W1876352197 cites W2124205711 @default.
- W1876352197 cites W2139155833 @default.
- W1876352197 cites W2149945426 @default.
- W1876352197 cites W2159347337 @default.
- W1876352197 cites W2163285329 @default.
- W1876352197 cites W2168558754 @default.
- W1876352197 cites W4247690662 @default.
- W1876352197 doi "https://doi.org/10.1093/genetics/164.3.1129" @default.
- W1876352197 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1462611" @default.
- W1876352197 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12871920" @default.
- W1876352197 hasPublicationYear "2003" @default.
- W1876352197 type Work @default.
- W1876352197 sameAs 1876352197 @default.
- W1876352197 citedByCount "140" @default.
- W1876352197 countsByYear W18763521972012 @default.
- W1876352197 countsByYear W18763521972013 @default.
- W1876352197 countsByYear W18763521972014 @default.
- W1876352197 countsByYear W18763521972015 @default.
- W1876352197 countsByYear W18763521972016 @default.
- W1876352197 countsByYear W18763521972017 @default.
- W1876352197 countsByYear W18763521972018 @default.
- W1876352197 countsByYear W18763521972019 @default.
- W1876352197 countsByYear W18763521972020 @default.
- W1876352197 countsByYear W18763521972021 @default.
- W1876352197 countsByYear W18763521972022 @default.
- W1876352197 countsByYear W18763521972023 @default.
- W1876352197 crossrefType "journal-article" @default.
- W1876352197 hasAuthorship W1876352197A5062622249 @default.
- W1876352197 hasAuthorship W1876352197A5086059667 @default.
- W1876352197 hasAuthorship W1876352197A5090105154 @default.
- W1876352197 hasBestOaLocation W18763521971 @default.
- W1876352197 hasConcept C104317684 @default.
- W1876352197 hasConcept C105795698 @default.
- W1876352197 hasConcept C106934330 @default.
- W1876352197 hasConcept C107673813 @default.
- W1876352197 hasConcept C154945302 @default.
- W1876352197 hasConcept C158424031 @default.
- W1876352197 hasConcept C199360897 @default.
- W1876352197 hasConcept C33923547 @default.
- W1876352197 hasConcept C41008148 @default.
- W1876352197 hasConcept C51167844 @default.
- W1876352197 hasConcept C54355233 @default.
- W1876352197 hasConcept C57830394 @default.
- W1876352197 hasConcept C65965080 @default.
- W1876352197 hasConcept C81917197 @default.
- W1876352197 hasConcept C81941488 @default.
- W1876352197 hasConcept C86803240 @default.
- W1876352197 hasConceptScore W1876352197C104317684 @default.
- W1876352197 hasConceptScore W1876352197C105795698 @default.
- W1876352197 hasConceptScore W1876352197C106934330 @default.
- W1876352197 hasConceptScore W1876352197C107673813 @default.
- W1876352197 hasConceptScore W1876352197C154945302 @default.
- W1876352197 hasConceptScore W1876352197C158424031 @default.
- W1876352197 hasConceptScore W1876352197C199360897 @default.
- W1876352197 hasConceptScore W1876352197C33923547 @default.
- W1876352197 hasConceptScore W1876352197C41008148 @default.
- W1876352197 hasConceptScore W1876352197C51167844 @default.
- W1876352197 hasConceptScore W1876352197C54355233 @default.
- W1876352197 hasConceptScore W1876352197C57830394 @default.
- W1876352197 hasConceptScore W1876352197C65965080 @default.
- W1876352197 hasConceptScore W1876352197C81917197 @default.
- W1876352197 hasConceptScore W1876352197C81941488 @default.
- W1876352197 hasConceptScore W1876352197C86803240 @default.
- W1876352197 hasIssue "3" @default.
- W1876352197 hasLocation W18763521971 @default.
- W1876352197 hasLocation W18763521972 @default.
- W1876352197 hasOpenAccess W1876352197 @default.
- W1876352197 hasPrimaryLocation W18763521971 @default.
- W1876352197 hasRelatedWork W1501016332 @default.
- W1876352197 hasRelatedWork W1502435251 @default.
- W1876352197 hasRelatedWork W1584341211 @default.