Matches in SemOpenAlex for { <https://semopenalex.org/work/W1876848560> ?p ?o ?g. }
- W1876848560 endingPage "45" @default.
- W1876848560 startingPage "32" @default.
- W1876848560 abstract "The two-level problem studied in this article consists of optimizing the refueling costs of a fleet of locomotives over a railway network. The goal consists of determining: (1) the number of refueling trucks contracted for each yard (truck assignment problem denoted TAP) and (2) the refueling plan of each locomotive (fuel distribution problem denoted FDP). As the FDP can be solved efficiently with existing methods, the focus is put on the TAP only. In a first version of the problem (denoted (P1)), various linear costs (e.g., fuel, fixed cost associated with each refueling, weekly operating costs of trucks) have to be minimized while satisfying a set of constraints (e.g., limited capacities of the locomotives and the trucks). In contrast with the existing literature on this problem, two types of nonlinear cost components will also be considered, based on the following ideas: (1) if several trucks from the same fuel supplier are contracted for the same yard, the supplier is likely to propose discounted prices for that yard (Problem (P2)); (2) if a train stops too often on its route, a penalty is incurred, which represents the dissatisfaction of the clients (Problem (P3)). Even if exact methods based on a mixed integer linear program formulation are available for (P1), they are not appropriate anymore to tackle (P2) and (P3). Various methods are proposed for the TAP: a descent local search, a tabu search, and a learning tabu search (LTS). The latter is a new type of local search algorithm. It involves a learning process relying on a trail system, and it can be applied to any combinatorial optimization problem. Results are reported and discussed for a large set of instances (for (P1), (P2), and (P3)), and show the good performance of LTS. © 2014 Wiley Periodicals, Inc. 62:32–45, 2015" @default.
- W1876848560 created "2016-06-24" @default.
- W1876848560 creator A5020998406 @default.
- W1876848560 creator A5063927903 @default.
- W1876848560 date "2014-12-12" @default.
- W1876848560 modified "2023-10-04" @default.
- W1876848560 title "A learning tabu search for a truck allocation problem with linear and nonlinear cost components" @default.
- W1876848560 cites W1530490667 @default.
- W1876848560 cites W1577151555 @default.
- W1876848560 cites W1974474863 @default.
- W1876848560 cites W1977270385 @default.
- W1876848560 cites W1978710427 @default.
- W1876848560 cites W1978828718 @default.
- W1876848560 cites W1998752240 @default.
- W1876848560 cites W2000525593 @default.
- W1876848560 cites W2005375428 @default.
- W1876848560 cites W2006192728 @default.
- W1876848560 cites W2013205100 @default.
- W1876848560 cites W2022838122 @default.
- W1876848560 cites W2041260178 @default.
- W1876848560 cites W2045874749 @default.
- W1876848560 cites W2053289921 @default.
- W1876848560 cites W2054701121 @default.
- W1876848560 cites W2059266271 @default.
- W1876848560 cites W2063467791 @default.
- W1876848560 cites W2069511180 @default.
- W1876848560 cites W2072012497 @default.
- W1876848560 cites W2095383966 @default.
- W1876848560 cites W2101834520 @default.
- W1876848560 cites W2132306416 @default.
- W1876848560 cites W2138411682 @default.
- W1876848560 cites W2140764876 @default.
- W1876848560 cites W2143946229 @default.
- W1876848560 cites W2151055051 @default.
- W1876848560 cites W2166194239 @default.
- W1876848560 cites W4212899374 @default.
- W1876848560 doi "https://doi.org/10.1002/nav.21612" @default.
- W1876848560 hasPublicationYear "2014" @default.
- W1876848560 type Work @default.
- W1876848560 sameAs 1876848560 @default.
- W1876848560 citedByCount "19" @default.
- W1876848560 countsByYear W18768485602015 @default.
- W1876848560 countsByYear W18768485602016 @default.
- W1876848560 countsByYear W18768485602018 @default.
- W1876848560 countsByYear W18768485602019 @default.
- W1876848560 countsByYear W18768485602021 @default.
- W1876848560 countsByYear W18768485602022 @default.
- W1876848560 countsByYear W18768485602023 @default.
- W1876848560 crossrefType "journal-article" @default.
- W1876848560 hasAuthorship W1876848560A5020998406 @default.
- W1876848560 hasAuthorship W1876848560A5063927903 @default.
- W1876848560 hasBestOaLocation W18768485602 @default.
- W1876848560 hasConcept C121332964 @default.
- W1876848560 hasConcept C123370116 @default.
- W1876848560 hasConcept C126255220 @default.
- W1876848560 hasConcept C127413603 @default.
- W1876848560 hasConcept C168956720 @default.
- W1876848560 hasConcept C171146098 @default.
- W1876848560 hasConcept C22212356 @default.
- W1876848560 hasConcept C2781018962 @default.
- W1876848560 hasConcept C33923547 @default.
- W1876848560 hasConcept C41008148 @default.
- W1876848560 hasConcept C41045048 @default.
- W1876848560 hasConcept C42475967 @default.
- W1876848560 hasConcept C52121051 @default.
- W1876848560 hasConcept C62520636 @default.
- W1876848560 hasConcept C78519656 @default.
- W1876848560 hasConcept C94026978 @default.
- W1876848560 hasConceptScore W1876848560C121332964 @default.
- W1876848560 hasConceptScore W1876848560C123370116 @default.
- W1876848560 hasConceptScore W1876848560C126255220 @default.
- W1876848560 hasConceptScore W1876848560C127413603 @default.
- W1876848560 hasConceptScore W1876848560C168956720 @default.
- W1876848560 hasConceptScore W1876848560C171146098 @default.
- W1876848560 hasConceptScore W1876848560C22212356 @default.
- W1876848560 hasConceptScore W1876848560C2781018962 @default.
- W1876848560 hasConceptScore W1876848560C33923547 @default.
- W1876848560 hasConceptScore W1876848560C41008148 @default.
- W1876848560 hasConceptScore W1876848560C41045048 @default.
- W1876848560 hasConceptScore W1876848560C42475967 @default.
- W1876848560 hasConceptScore W1876848560C52121051 @default.
- W1876848560 hasConceptScore W1876848560C62520636 @default.
- W1876848560 hasConceptScore W1876848560C78519656 @default.
- W1876848560 hasConceptScore W1876848560C94026978 @default.
- W1876848560 hasIssue "1" @default.
- W1876848560 hasLocation W18768485601 @default.
- W1876848560 hasLocation W18768485602 @default.
- W1876848560 hasOpenAccess W1876848560 @default.
- W1876848560 hasPrimaryLocation W18768485601 @default.
- W1876848560 hasRelatedWork W2022755394 @default.
- W1876848560 hasRelatedWork W2047983068 @default.
- W1876848560 hasRelatedWork W2142074006 @default.
- W1876848560 hasRelatedWork W2152801834 @default.
- W1876848560 hasRelatedWork W2388276503 @default.
- W1876848560 hasRelatedWork W2393849301 @default.
- W1876848560 hasRelatedWork W2553071953 @default.
- W1876848560 hasRelatedWork W2896294794 @default.
- W1876848560 hasRelatedWork W3165273526 @default.