Matches in SemOpenAlex for { <https://semopenalex.org/work/W18772241> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W18772241 abstract "There has been a growing interest in the use of implicit representations for curves and surfaces. Applications arise in numerous areas of physical sciences, such as engineering, robotics, vision, graphics, geometric optics, and in many areas of pure mathematics, such as differential geometry, complex analysis, number theory and differential equations. Implicit algebraic models have proved to be very useful representations for 2D curves and 3D surfaces in several model-based applications including vision, graphics, computational geometry and CAD. Their interpolation properties can compensate for certain amounts of missing-data and/or occlusion. Moreover, for more accurate representations of object data, higher degree curve or surface models can be used. Furthermore, geometric and/or algebraic invariants can be defined for implicit algebraic models, and subsequently used for identifying objects in arbitrary configurations. The primary purpose of this thesis is to present some new insight into implicit algebraic models. We do this by presenting several ramifications of a fundamental new result, called the unique decomposition theorem for algebraic curves. This theorem allows us to express higher degree algebraic curves as a unique sum of real conic-line products. We use this compact representation to establish several new results, such as canonical representations for identifying and comparing free-form objects, constructing a complete set of functionally independent geometric invariants for curves of arbitrary degree, developing elliptical-circular representations for quartic curves, which imply a particularly transparent set of geometric invariants, modifying free-form shapes through conic primitive alterations, and generating sweep surfaces using conic interpolations. These results represent the main contribution of this thesis." @default.
- W18772241 created "2016-06-24" @default.
- W18772241 creator A5031429692 @default.
- W18772241 creator A5068191781 @default.
- W18772241 date "1999-01-01" @default.
- W18772241 modified "2023-09-23" @default.
- W18772241 title "Polynomial decompositions for shape modeling, object recognition and alignment" @default.
- W18772241 hasPublicationYear "1999" @default.
- W18772241 type Work @default.
- W18772241 sameAs 18772241 @default.
- W18772241 citedByCount "6" @default.
- W18772241 crossrefType "journal-article" @default.
- W18772241 hasAuthorship W18772241A5031429692 @default.
- W18772241 hasAuthorship W18772241A5068191781 @default.
- W18772241 hasConcept C104065381 @default.
- W18772241 hasConcept C108598597 @default.
- W18772241 hasConcept C134306372 @default.
- W18772241 hasConcept C136119220 @default.
- W18772241 hasConcept C17744445 @default.
- W18772241 hasConcept C186219872 @default.
- W18772241 hasConcept C199539241 @default.
- W18772241 hasConcept C202444582 @default.
- W18772241 hasConcept C207043602 @default.
- W18772241 hasConcept C2524010 @default.
- W18772241 hasConcept C26959085 @default.
- W18772241 hasConcept C2731732 @default.
- W18772241 hasConcept C2776359362 @default.
- W18772241 hasConcept C33923547 @default.
- W18772241 hasConcept C51544822 @default.
- W18772241 hasConcept C68363185 @default.
- W18772241 hasConcept C69653121 @default.
- W18772241 hasConcept C78045399 @default.
- W18772241 hasConcept C90119067 @default.
- W18772241 hasConcept C9376300 @default.
- W18772241 hasConcept C94625758 @default.
- W18772241 hasConceptScore W18772241C104065381 @default.
- W18772241 hasConceptScore W18772241C108598597 @default.
- W18772241 hasConceptScore W18772241C134306372 @default.
- W18772241 hasConceptScore W18772241C136119220 @default.
- W18772241 hasConceptScore W18772241C17744445 @default.
- W18772241 hasConceptScore W18772241C186219872 @default.
- W18772241 hasConceptScore W18772241C199539241 @default.
- W18772241 hasConceptScore W18772241C202444582 @default.
- W18772241 hasConceptScore W18772241C207043602 @default.
- W18772241 hasConceptScore W18772241C2524010 @default.
- W18772241 hasConceptScore W18772241C26959085 @default.
- W18772241 hasConceptScore W18772241C2731732 @default.
- W18772241 hasConceptScore W18772241C2776359362 @default.
- W18772241 hasConceptScore W18772241C33923547 @default.
- W18772241 hasConceptScore W18772241C51544822 @default.
- W18772241 hasConceptScore W18772241C68363185 @default.
- W18772241 hasConceptScore W18772241C69653121 @default.
- W18772241 hasConceptScore W18772241C78045399 @default.
- W18772241 hasConceptScore W18772241C90119067 @default.
- W18772241 hasConceptScore W18772241C9376300 @default.
- W18772241 hasConceptScore W18772241C94625758 @default.
- W18772241 hasLocation W187722411 @default.
- W18772241 hasOpenAccess W18772241 @default.
- W18772241 hasPrimaryLocation W187722411 @default.
- W18772241 hasRelatedWork W1920702468 @default.
- W18772241 hasRelatedWork W1976995090 @default.
- W18772241 hasRelatedWork W2004071308 @default.
- W18772241 hasRelatedWork W2015135397 @default.
- W18772241 hasRelatedWork W2093518175 @default.
- W18772241 hasRelatedWork W2108500582 @default.
- W18772241 hasRelatedWork W2139087592 @default.
- W18772241 hasRelatedWork W2155208749 @default.
- W18772241 hasRelatedWork W2162525815 @default.
- W18772241 hasRelatedWork W2188750592 @default.
- W18772241 hasRelatedWork W2258592526 @default.
- W18772241 hasRelatedWork W2280352592 @default.
- W18772241 hasRelatedWork W2299661528 @default.
- W18772241 hasRelatedWork W2411957496 @default.
- W18772241 hasRelatedWork W2951400357 @default.
- W18772241 hasRelatedWork W304985040 @default.
- W18772241 hasRelatedWork W3144600888 @default.
- W18772241 hasRelatedWork W3192677034 @default.
- W18772241 hasRelatedWork W50678749 @default.
- W18772241 hasRelatedWork W76431119 @default.
- W18772241 isParatext "false" @default.
- W18772241 isRetracted "false" @default.
- W18772241 magId "18772241" @default.
- W18772241 workType "article" @default.