Matches in SemOpenAlex for { <https://semopenalex.org/work/W1879409941> ?p ?o ?g. }
- W1879409941 endingPage "392" @default.
- W1879409941 startingPage "385" @default.
- W1879409941 abstract "Since the discovery of the High-T c superconductors, [1], the Hubbard model has been the subject of intense investigations following Anderson’s proposal [2] that the model should capture the essential physics of the cuprate superconductors. From the earlier attempts to obtain the magnetic phase diagram on the square lattice (for an overview see the book by Mattis [3]) one can deduce that antiferromagnetic order exists in the vicinity of the half-filled band whereas ferromagnetic ordering might take place in the phase diagram for strong repulsive interaction strength and moderate hole doping of the half-filled band. Obviously antiferromagnetic and ferromagnetic orders compete in this part of the phase diagram. More recent calculations [4] established that the ground state of the Hubbard model on the square lattice shows long-ranged antiferromagnetic ordering with a charge transfer gap. However, the problem of mobile holes in an antiferromagnetic background remains mostly unsolved. Suggestions for a very wide ferromagnetic domain in the phase diagram based on the restricted Hartree-Fock Approximation have been made by several authors [5] on the cubic lattice, and on the square lattice [6–8]. This domain appears for large interaction and moderate hole doping in which case the Hartree-Fock Approximation ceases to be controlled. Within this framework one expects to obtain reliable results for moderate U where the paramagnetic phase is indeed unstable towards an incommensurate spin structure at a critical density n c (U) [9]. The Gutzwiller Approximation (GA) [10–12] has been applied [13], even for large U, yielding results similar to the Hartree-Fock Approximation. However, for large U, a ferromagnetic domain appears only if the density is larger than some critical value. In the Kotliar and Ruckenstein slave boson technique [14] the GA appears as a saddle-point approximation of this field theoretical representation of the Hubbard model. In the latter a metal-insulator transition occurs at half-filling as recently discussed by Lavagna [15]. The contribution of the thermal fluctuations has been calculated [16] and turned out to be incomplete as this representation, even though exact, is not manifestly spin-rotation invariant. Spin-rotation invariant [17] and spin and charge-rotation invariant [18] formulations have been proposed and the first one was used to calculate correlation functions [19] and spin fluctuation contributions to the specific heat [20]. Comparisons of ground state energy with Quantum Monte-Carlo simulations, including antiferromagnetic ordering [21] and spiral states [22], or with exact diagonalisation data [23] have been done and yield excellent agreement, and a magnetic phase diagram has been proposed [24]." @default.
- W1879409941 created "2016-06-24" @default.
- W1879409941 creator A5013353661 @default.
- W1879409941 creator A5015139778 @default.
- W1879409941 date "1995-01-01" @default.
- W1879409941 modified "2023-09-26" @default.
- W1879409941 title "Metal to Insulator Transition in the 2-D Hubbard Model: A Slave-Boson Approach" @default.
- W1879409941 cites W1967312565 @default.
- W1879409941 cites W1967998123 @default.
- W1879409941 cites W1970249647 @default.
- W1879409941 cites W1973117262 @default.
- W1879409941 cites W1980206343 @default.
- W1879409941 cites W1986647018 @default.
- W1879409941 cites W2002563656 @default.
- W1879409941 cites W2003681908 @default.
- W1879409941 cites W2004428443 @default.
- W1879409941 cites W2008231972 @default.
- W1879409941 cites W2008348370 @default.
- W1879409941 cites W2009737528 @default.
- W1879409941 cites W2016481497 @default.
- W1879409941 cites W2021838966 @default.
- W1879409941 cites W2029709261 @default.
- W1879409941 cites W2032093703 @default.
- W1879409941 cites W2034956503 @default.
- W1879409941 cites W2040447533 @default.
- W1879409941 cites W2045538510 @default.
- W1879409941 cites W2045821244 @default.
- W1879409941 cites W2048567233 @default.
- W1879409941 cites W2056304087 @default.
- W1879409941 cites W2056456662 @default.
- W1879409941 cites W2065193467 @default.
- W1879409941 cites W2067041030 @default.
- W1879409941 cites W2069540370 @default.
- W1879409941 cites W2074018993 @default.
- W1879409941 cites W2085914164 @default.
- W1879409941 cites W2091632749 @default.
- W1879409941 cites W2124562005 @default.
- W1879409941 cites W2135764065 @default.
- W1879409941 cites W2159345479 @default.
- W1879409941 doi "https://doi.org/10.1007/978-1-4899-1042-4_43" @default.
- W1879409941 hasPublicationYear "1995" @default.
- W1879409941 type Work @default.
- W1879409941 sameAs 1879409941 @default.
- W1879409941 citedByCount "2" @default.
- W1879409941 countsByYear W18794099412016 @default.
- W1879409941 countsByYear W18794099412020 @default.
- W1879409941 crossrefType "book-chapter" @default.
- W1879409941 hasAuthorship W1879409941A5013353661 @default.
- W1879409941 hasAuthorship W1879409941A5015139778 @default.
- W1879409941 hasBestOaLocation W18794099412 @default.
- W1879409941 hasConcept C106074065 @default.
- W1879409941 hasConcept C121332964 @default.
- W1879409941 hasConcept C124712363 @default.
- W1879409941 hasConcept C125469278 @default.
- W1879409941 hasConcept C130893637 @default.
- W1879409941 hasConcept C136766821 @default.
- W1879409941 hasConcept C155355069 @default.
- W1879409941 hasConcept C24890656 @default.
- W1879409941 hasConcept C26873012 @default.
- W1879409941 hasConcept C2777620828 @default.
- W1879409941 hasConcept C2780567962 @default.
- W1879409941 hasConcept C2781204021 @default.
- W1879409941 hasConcept C44280652 @default.
- W1879409941 hasConcept C51329190 @default.
- W1879409941 hasConcept C54101563 @default.
- W1879409941 hasConcept C62520636 @default.
- W1879409941 hasConcept C69523127 @default.
- W1879409941 hasConcept C82217956 @default.
- W1879409941 hasConcept C85906118 @default.
- W1879409941 hasConceptScore W1879409941C106074065 @default.
- W1879409941 hasConceptScore W1879409941C121332964 @default.
- W1879409941 hasConceptScore W1879409941C124712363 @default.
- W1879409941 hasConceptScore W1879409941C125469278 @default.
- W1879409941 hasConceptScore W1879409941C130893637 @default.
- W1879409941 hasConceptScore W1879409941C136766821 @default.
- W1879409941 hasConceptScore W1879409941C155355069 @default.
- W1879409941 hasConceptScore W1879409941C24890656 @default.
- W1879409941 hasConceptScore W1879409941C26873012 @default.
- W1879409941 hasConceptScore W1879409941C2777620828 @default.
- W1879409941 hasConceptScore W1879409941C2780567962 @default.
- W1879409941 hasConceptScore W1879409941C2781204021 @default.
- W1879409941 hasConceptScore W1879409941C44280652 @default.
- W1879409941 hasConceptScore W1879409941C51329190 @default.
- W1879409941 hasConceptScore W1879409941C54101563 @default.
- W1879409941 hasConceptScore W1879409941C62520636 @default.
- W1879409941 hasConceptScore W1879409941C69523127 @default.
- W1879409941 hasConceptScore W1879409941C82217956 @default.
- W1879409941 hasConceptScore W1879409941C85906118 @default.
- W1879409941 hasLocation W18794099411 @default.
- W1879409941 hasLocation W18794099412 @default.
- W1879409941 hasLocation W18794099413 @default.
- W1879409941 hasOpenAccess W1879409941 @default.
- W1879409941 hasPrimaryLocation W18794099411 @default.
- W1879409941 hasRelatedWork W1879409941 @default.
- W1879409941 hasRelatedWork W1997616439 @default.
- W1879409941 hasRelatedWork W1998570242 @default.
- W1879409941 hasRelatedWork W2007570532 @default.
- W1879409941 hasRelatedWork W2040653199 @default.