Matches in SemOpenAlex for { <https://semopenalex.org/work/W1880109890> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W1880109890 abstract "The critical group K(G) of a directed graph G=(V,E) is the cokernel of the transpose of the Laplacian matrix of G acting on the integer lattice Z^V. For undirected graphs G, this has been considered by Bacher, de la Harpe, and Nagnibeda, and by Biggs. We prove several things, among which are: K(G/p) is a subgroup of K(G) when p is an equitable partition and G is strongly connected; for undirected graphs, the torsion subgroup of K(G) depends only on the graphic matroid of G; and, the `dollar game' of Biggs can be generalized to give a combinatorial interpretation for the elements of K(G), when G is strongly connected." @default.
- W1880109890 created "2016-06-24" @default.
- W1880109890 creator A5085358872 @default.
- W1880109890 date "2000-10-25" @default.
- W1880109890 modified "2023-09-27" @default.
- W1880109890 title "The critical group of a directed graph" @default.
- W1880109890 cites W1515707356 @default.
- W1880109890 cites W1521121495 @default.
- W1880109890 cites W1526819168 @default.
- W1880109890 cites W1600475114 @default.
- W1880109890 cites W1910083634 @default.
- W1880109890 cites W1974936141 @default.
- W1880109890 cites W2111293718 @default.
- W1880109890 hasPublicationYear "2000" @default.
- W1880109890 type Work @default.
- W1880109890 sameAs 1880109890 @default.
- W1880109890 citedByCount "14" @default.
- W1880109890 countsByYear W18801098902013 @default.
- W1880109890 countsByYear W18801098902014 @default.
- W1880109890 countsByYear W18801098902015 @default.
- W1880109890 countsByYear W18801098902016 @default.
- W1880109890 countsByYear W18801098902020 @default.
- W1880109890 crossrefType "posted-content" @default.
- W1880109890 hasAuthorship W1880109890A5085358872 @default.
- W1880109890 hasConcept C106286213 @default.
- W1880109890 hasConcept C114614502 @default.
- W1880109890 hasConcept C118615104 @default.
- W1880109890 hasConcept C132525143 @default.
- W1880109890 hasConcept C3018234147 @default.
- W1880109890 hasConcept C33923547 @default.
- W1880109890 hasConceptScore W1880109890C106286213 @default.
- W1880109890 hasConceptScore W1880109890C114614502 @default.
- W1880109890 hasConceptScore W1880109890C118615104 @default.
- W1880109890 hasConceptScore W1880109890C132525143 @default.
- W1880109890 hasConceptScore W1880109890C3018234147 @default.
- W1880109890 hasConceptScore W1880109890C33923547 @default.
- W1880109890 hasLocation W18801098901 @default.
- W1880109890 hasOpenAccess W1880109890 @default.
- W1880109890 hasPrimaryLocation W18801098901 @default.
- W1880109890 hasRelatedWork W1581046356 @default.
- W1880109890 hasRelatedWork W1648334473 @default.
- W1880109890 hasRelatedWork W1910083634 @default.
- W1880109890 hasRelatedWork W1955801390 @default.
- W1880109890 hasRelatedWork W1969007985 @default.
- W1880109890 hasRelatedWork W2006901982 @default.
- W1880109890 hasRelatedWork W2013190996 @default.
- W1880109890 hasRelatedWork W2020581731 @default.
- W1880109890 hasRelatedWork W2020915184 @default.
- W1880109890 hasRelatedWork W2037190943 @default.
- W1880109890 hasRelatedWork W2040967704 @default.
- W1880109890 hasRelatedWork W2061798885 @default.
- W1880109890 hasRelatedWork W2075514521 @default.
- W1880109890 hasRelatedWork W2085028301 @default.
- W1880109890 hasRelatedWork W2087694003 @default.
- W1880109890 hasRelatedWork W2106963958 @default.
- W1880109890 hasRelatedWork W2111293718 @default.
- W1880109890 hasRelatedWork W2205557965 @default.
- W1880109890 hasRelatedWork W2254723345 @default.
- W1880109890 hasRelatedWork W2908858842 @default.
- W1880109890 isParatext "false" @default.
- W1880109890 isRetracted "false" @default.
- W1880109890 magId "1880109890" @default.
- W1880109890 workType "article" @default.