Matches in SemOpenAlex for { <https://semopenalex.org/work/W1880210412> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1880210412 abstract "We introduce a new second-kind integral equation method to solve direct rough surface scattering problems in two dimensions. This approach is based, in part, upon the bounded obstacle scattering method that was originally presented in Bruno et al. [2004] and is discussed in an appendix of this thesis. We restrict our attention to problems in which time-harmonic acoustic or electromagnetic plane waves scatter from rough surfaces that are perfectly reflecting, periodic and at least twice continuously differentiable; both sound-soft and sound-hard type acoustic scattering cases---correspondingly, transverse-electric and transverse-magnetic electromagnetic scattering cases---are treated. Key elements of our algorithm include the use of infinitely continuously differentiable windowing functions that comprise partitions of unity, analytical representations of the integral equation’s solution (taking into account either the absence or presence of multiple scattering) and spectral quadrature formulas. Together, they provide an efficient alternative to the use of the periodic Green’s function found in the kernel of most solvers’ integral operators, and they strongly mitigate the rapidly increasing computational complexity that is typically borne as the frequency of the incident field increases. After providing a complete description of our solver and illustrating its usefulness through some preliminary examples, we rigorously prove its convergence. In particular, the super-algebraic convergence of the method is established for problems with infinitely continuously differentiable scattering surfaces. We additionally show that accuracies within prescribed tolerances are achieved with fixed computational cost as the frequency increases without bound for cases in which no multiple reflections occur. We present extensive numerical data demonstrating the convergence, accuracy and efficiency of our computational approach for a wide range of scattering configurations (sinusoidal, multi-scale and simulated ocean surfaces are considered). These results include favorable comparisons with other leading integral equation methods as well as the non-convergent Kirchhoff approximation. They also contain analyses of sets of cases in which the major physical parameters associated with these problems (i.e., surface height, wavenumber and incidence angle) are systematically varied. As a result of these tests, we conclude that the proposed algorithm is highly competitive and robust: it significantly outperforms other leading numerical methods in many cases of scientific and practical relevance, and it facilitates rapid analyses of a wide variety of scattering configurations." @default.
- W1880210412 created "2016-06-24" @default.
- W1880210412 creator A5046627615 @default.
- W1880210412 date "2008-01-01" @default.
- W1880210412 modified "2023-09-27" @default.
- W1880210412 title "A Super-Algebraically Convergent, Windowing-Based Approach to the Evaluation of Scattering from Periodic Rough Surfaces" @default.
- W1880210412 doi "https://doi.org/10.7907/f9vm-jp39." @default.
- W1880210412 hasPublicationYear "2008" @default.
- W1880210412 type Work @default.
- W1880210412 sameAs 1880210412 @default.
- W1880210412 citedByCount "4" @default.
- W1880210412 countsByYear W18802104122013 @default.
- W1880210412 countsByYear W18802104122014 @default.
- W1880210412 countsByYear W18802104122015 @default.
- W1880210412 crossrefType "dissertation" @default.
- W1880210412 hasAuthorship W1880210412A5046627615 @default.
- W1880210412 hasConcept C120665830 @default.
- W1880210412 hasConcept C121332964 @default.
- W1880210412 hasConcept C126255220 @default.
- W1880210412 hasConcept C134306372 @default.
- W1880210412 hasConcept C182310444 @default.
- W1880210412 hasConcept C18591234 @default.
- W1880210412 hasConcept C191486275 @default.
- W1880210412 hasConcept C202615002 @default.
- W1880210412 hasConcept C27016315 @default.
- W1880210412 hasConcept C2778770139 @default.
- W1880210412 hasConcept C33923547 @default.
- W1880210412 hasConcept C34388435 @default.
- W1880210412 hasConceptScore W1880210412C120665830 @default.
- W1880210412 hasConceptScore W1880210412C121332964 @default.
- W1880210412 hasConceptScore W1880210412C126255220 @default.
- W1880210412 hasConceptScore W1880210412C134306372 @default.
- W1880210412 hasConceptScore W1880210412C182310444 @default.
- W1880210412 hasConceptScore W1880210412C18591234 @default.
- W1880210412 hasConceptScore W1880210412C191486275 @default.
- W1880210412 hasConceptScore W1880210412C202615002 @default.
- W1880210412 hasConceptScore W1880210412C27016315 @default.
- W1880210412 hasConceptScore W1880210412C2778770139 @default.
- W1880210412 hasConceptScore W1880210412C33923547 @default.
- W1880210412 hasConceptScore W1880210412C34388435 @default.
- W1880210412 hasLocation W18802104121 @default.
- W1880210412 hasOpenAccess W1880210412 @default.
- W1880210412 hasPrimaryLocation W18802104121 @default.
- W1880210412 hasRelatedWork W1517670975 @default.
- W1880210412 hasRelatedWork W1523113578 @default.
- W1880210412 hasRelatedWork W1977336080 @default.
- W1880210412 hasRelatedWork W1985048099 @default.
- W1880210412 hasRelatedWork W2003017040 @default.
- W1880210412 hasRelatedWork W2004682900 @default.
- W1880210412 hasRelatedWork W2029687546 @default.
- W1880210412 hasRelatedWork W2037512470 @default.
- W1880210412 hasRelatedWork W2039518636 @default.
- W1880210412 hasRelatedWork W2052409704 @default.
- W1880210412 hasRelatedWork W2120660542 @default.
- W1880210412 hasRelatedWork W2164745251 @default.
- W1880210412 hasRelatedWork W2224779109 @default.
- W1880210412 hasRelatedWork W2270612530 @default.
- W1880210412 hasRelatedWork W2524008933 @default.
- W1880210412 hasRelatedWork W2783608258 @default.
- W1880210412 hasRelatedWork W2805177917 @default.
- W1880210412 hasRelatedWork W2975583881 @default.
- W1880210412 hasRelatedWork W3099119377 @default.
- W1880210412 hasRelatedWork W2260558612 @default.
- W1880210412 isParatext "false" @default.
- W1880210412 isRetracted "false" @default.
- W1880210412 magId "1880210412" @default.
- W1880210412 workType "dissertation" @default.